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2.3.1 Examples of Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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2.8 Multivariate Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.8.2 Example: multivariate generalised hyperbolic Lévy process . . . . . . . . 39
2.8.3 Quadratic covariation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.10 Appendix of derivations and proofs . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.11 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.12 Bibliographic notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
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Abstract: This Chapter provides a first introduction to the use of Lévy processes as models of
log-prices in financial markets, focusing on the probabilistic aspects. Univariate and multivariate
models are discussed. A detailed bibliographical review is given at the end of the Chapter.
It is important to keep in mind that Lévy processes allow a flexible model for the marginal
distribution of returns, but still maintain that returns are iid. Obviously this is a very poor
description of reality and later on in our book we extend this framework to allow for stochastic
volatility. However, a significant understanding of these processes does help our understanding
both of the economics and the development of the later techniques given in the book.

2.1 What is this Chapter about?

In this Chapter we provide a first course on Lévy processes in the context of financial economics.
The focus will be on probabilistic and econometric issues; understanding the models and their
fit to returns on speculative assets. We leave until our Second book the vital issue of how these
models can guide investors in their the allocation of resources between risky and riskless assets
and the pricing of derivatives written on Lévy processes. The Chapter will refer to some common
datasets discussed in detail in Chapter 1 and will delay the discussion of literature on this topic
until the end of this Chapter. Throughout we hope our treatment will be as self-contained as
possible. At the end of this book we have given a brief introduction, called “The Primer,” to
stochastic analysis which may be of help to readers without a strong background in probability
theory.

This long Chapter has 8 other sections, whose goals are to:

• Introduce Lévy processes with non-negative increments.

• Extend the analysis to Lévy processes with real increments.

• Introduce time deformation, or time change, where we replace calendar time by a random
clock.

• Introduce quadratic variation, a central concept in econometrics and stochastic analysis.

• Brief discuss stochastic analysis in the context of Lévy processes.

• Introduce various methods for building multivariate Lévy processes.

• Draw conclusions to the Chapter.

• Discuss the literature associated with Lévy processes.

This Chapter leads into the next one, which will focus on methods for simulating the paths
of Lévy processes and the estimation and testing of these models on financial time series.

2.2 What is a Lévy process?

2.2.1 The random walk

The most basic model of the logarithm of the price of a risky asset is a random walk. It is built
by summing independent and identically distributed (i.i.d.) random variables c0, c1, ... to deliver

zn+1 =
n∑

s=0

cs, with z0 = 0, n = 0, 1, 2, ... .

8



The process is written in discrete time and is moved by the i.i.d. increments

zn+1 − zn = cn. (2.1)

Hence future changes in a random walk are unpredictable.
Random walks live in discrete time. What is the natural continuous time version of this

process? There are at least two strong answers to this question.

2.2.2 Brownian motion

The first approach is based on a central limit type result. Again suppose that {cs} is an i.i.d.
sequence whose first two moments exist. Then define the partial sum

zT (t) =
√
T
1

T

[tT ]∑

s=1

{cs − E(cs)} , t ≥ 0 (2.2)

where t represents time. It means that over any fixed interval for t, that is time, the process is
made up of centred and normalised sums of i.i.d. events. We then allow T , the number of these
events in any fixed interval of time of unit length, to go off to infinity (this is often labelled “in-
fill” asymptotics). As a result zT (t) obeys a central limit theory and becomes Gaussian. Further,
this idea can be extended to show that the whole partial sum, as a random function, converges
to a scaled version of Brownian motion, as T goes to infinity. At first sight this suggests the only
reasonable continuous time version of a random walk, which will sum up many small events, is
Brownian motion. This insight is, however, incorrect.

2.2.3 Infinite divisibility

Our book follows a second approach. Suppose that the goal is to design a continuous time
process at time 1, z(1), which has a distribution D. It may be possible to divide the time
from zero until one into T pieces, each of which has independent increments from a common
distribution D(T ) such that the sum

z(t) =

[tT ]∑

s=1

c(T )s , where c(T )s
i.i.d.∼ D(T ),

has the distribution D when t = 1. Then as T increases we imagine that the division of time
between zero and one becomes ever finer. In response, the increments and their distribution
D(T ) also change, but by construction D, the distribution of the sum, is left unchanged. A
simple example of this is where z(1) ∼ Po(1), then if

z(t) =

[tT ]∑

s=1

c(T )s , where c(T )s
i.i.d.∼ Po(1/T ),

this produces a valid random walk due to the fact that the independent Poisson increments
sum to a Poisson. Hence this process makes sense even as T goes to infinity and so this type
of construction can be used as a continuous time model — the Poisson process. The class of
distributions for which this construction is possible is those for which D is infinitely divisible.
The resulting processes are called Lévy processes. Examples of infinitely divisible distributions
include, focusing for the moment on only non-negative random variables, the Poisson, gamma,
reciprocal gamma, inverse Gaussian, reciprocal inverse Gaussian, F and positive stable distri-
butions.

9



2.2.4 The definition of a Lévy process

The natural continuous time version of the discrete time increment given in (2.1) is, for any
value of ∆ > 0,

z(t+∆)− z(t), t ∈ [0,∞] .

Increments play a crucial role in the formal definition of a Lévy process.

Definition 1 Lévy process. The stochastic process

z(t), t ∈ [0,∞] , z(0) = 0,

is a Lévy process if and only if it has independent and (strictly) stationary increments.

In the definition the first assumption means that the shocks to the process are independent
over time and that they are summed, while the second assumption means that the distribution
of z(t + ∆) − z(t) may change with ∆ but does not depend upon t. The independence and
stationarity of the increments of the Lévy process means that

C {θ ‡ z(t)} = log [E exp {iθz(t)}]
= t log [E exp {iθz(1)}]
= tC {θ ‡ z(1)} ,

so the distribution of z(t) is completely governed by the cumulants of z(1), the value of the
process at time one.

If a Lévy process is used as a model for the log-price of an underlying asset then the in-
crements can be thought of as returns. Consequently Lévy based models provide a potentially
flexible framework with which to model the marginal distribution of returns. However, returns
will be, measured over a fixed value of ∆, independent and identically distributed. This im-
portant observation will imply that Lévy processes can only ever be a rather partially realistic
model of asset prices as asset price returns have important serial dependencies such as volatility
clustering. This point will be discussed at more length in the fourth chapter of this book. For
now we introduce the formal development of Lévy processes.

2.3 Processes with non-negative increments — subordinators

2.3.1 Examples of Lévy processes

Motivation

We start with Lévy processes with non-negative increments. Such processes are often called
subordinators. This is our focus for two reasons: (i) they are mathematically considerably
simpler, (ii) most of models we build in this book will have components which are Lévy processes
with non-negative increments and so they are a major concern to us. The discussion of processes
on the real line will be given in the next section. In order to reduce the technical demands on
the reader we are mostly going to use cumulant functions in this context as this is sufficient for
our purposes. As the processes are positive, it is natural to work with the kumulant function in
the form

K {θ ‡ z(1)} = log [E exp {−θz(1)}] , where θ ≥ 0.

Occasionally the more standard cumulant function

K {θ ‡ z(1)} = log [E exp {θz(1)}] , where θ ≥ 0,

will be used.
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Poisson process

Introduction Suppose we count the number of events which have occurred from time 0 until
t ≥ 0. The very simplest continuous time model for this type is a Lévy process with independent
Poisson increments

z(1) ∼ Po(ψ), ψ > 0,

with density

fz(1)(x) =
e−ψψx

x!
, x = 0, 1, 2, ....

The process {z(t)}t≥0 is called a (homogeneous) Poisson process. Here the mean ψ is often
called the intensity of this counting process. A simulated sample path of this process, when
ψ = 1, is given in Figure 2.1(a). It shows a jumping process, where the jumps are irregularly
spaced in time and are of equal size. The times at which events occur are called arrival times,
and are written as τ 1, τ2, ..., τ z(t).

0 2 4 6 8 10
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12

14 (a) Simulated Poisson process
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2.5

5.0

7.5

10.0
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17.5

(b) Simulated CPP with IG(1,1) innovations

Figure 2.1: (a) Sample path of a homogeneous Poisson process with intensity ψ = 1. Horizontal
axis is time t, vertical is z(t). (b) Corresponding compound Poisson process with cs ∼ IG(1, 1).
code: levy graphs.ox.

For the Poisson process

K {θ ‡ z(1)} = log [E exp {−θz(1)}]
= ψ(e−θ − 1)

= −ψ(1− e−θ).

Now we know that −ψt(1−e−θ) corresponds to a cumulant function for a Po(tψ), which implies
that the Poisson distribution is infinitely divisible. Indeed z(t) ∼ Po(tψ).

Poisson process is càdlàg An important feature of some stochastic processes, including
Brownian motion, is that they have continuous sample paths with probability one. A weaker as-
sumption is the one exhibited by the Poisson process. This allows jumps but is, with probability
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one, right continuous
lim
s↓t

z(s) = z(t)

and has limits from the left
z(t−) = lim

s↑t
z(s).

For such processes the jump just before time t is written as

∆z(t) = z(t)− z(t−).

This notation clashes with our use of ∆ to stand for a time interval.
We might expect these types of jumps to appear in financial processes due to dividend

payments or news, such as macroeconomic announcements. A process with this mathematical
property is called a càdlàg (continue à droit, limite à gauche) or a RCLL (right continuous
left limit) process in the literature. It causes no restrictions as regard the finite dimensional
distributions and we follow the convention here that all Lévy processes are càdlàg, unless other-
wise stated. The similiarly named property càglàd (continue à gauche, limite à droit) plays an
important role in our Appendix on stochastic analysis.

Poisson process is a special semimartingale Semimartingales play a central role in mod-
ern stochastic analysis, in particular providing a basis for the definition of a stochastic integral.
Consequently it is important to note that a Poisson process is a semimartingale. We see this by
noting that any semimartingale x can be decomposed into

x(t) = a(t) +m(t), (2.3)

where a is of local bounded variation and m is a local martingale. Here we have assumed z(0) =
a(0) = m(0) = 0. This result is discussed at some length in our Primer on stochastic analysis
at the end of this Chapter. When a(t) is also a predictable process then the semimartingale is
said to be special and the decomposition (2.3) is unique and is called canonical. Informally a
process is said to be predictable if its value at time t is known an instant before t, given the
filtration. Hence all deterministic functions of time are predictable, as are càglàd processes.

In the case of the Poisson process we can see that z can be decomposed in this way by writing

a(t) = E {z(t)} = ψt and m(t) = z(t)− ψt.

The m process, which is often called a compensated Poisson process, is a mean-0 martingale,
for E(m(t)|Ft) = 0. It will turn out that all Lévy processes for whom E {z(t)} exists are special
semimartingales. This is an important result.

As z is a Lévy process the theory of semimartingales implies that if h is locally square
integrable then the stochastic integral

y(t) =

∫ t

0
h(u−)dz(u),

can be constructed. This is often written in the more abstract notation as the process

y = h • z.

The integral can often be defined as the limit in probability of finite sums of the form

n−1∑

i=0

h(ui)(z(ui+1)− z(ui)),
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where 0 = u0 < u1 < ... < un = t. Any such integral process y is itself a semimartingale. More
formal details of stochastic integrals are given in our Primer. When z is a Poisson process y
simplifies to the random sum

y(t) =

z(t)∑

j=1

h(τ j−)

where τ 1, τ2, ..., τ z(t) are the arrival times of z.
In the case of a special semimartingale we can view da(t) informally as the continuously

updated expected return conditional on the information just before t, while dx(t) is the return
and dm(t) is the unanticipated return. Without predictability on a(t) this decomposition is
not possible. Thus, from an economic viewpoint special semimartingales seem of fundamental
importance.

Ito formula for a Poisson process Suppose we wish to look at a function of some stock
price process s, y(t) = f(s(t)) where s(t) = µt + z(t), which is drift plus a Poisson process
z. This is a continuous time version of a binomial tree model frequently used in financial
economics1. Ito’s formula for semimartingales given in (A.11) applies here, for all Lévy processes
are semimartingales. In this case

y(t) = y(0) +

∫ t

0
f ′ {s(u−)} ds(u) +

∑

0<u≤t
{f {s(u)} − f {s(u−)} − f ′ {s(u−)}∆u}, (2.4)

which can be written in the form of a stochastic differential equation (SDE) as

dy(t) = f ′ {s(t−)} ds(t) +
[
f {s(t)} − f {s(t−)} − f ′ {s(t−)}∆s

]
.

This can be simplified as ds(t) = µdt+∆z(t) and ∆s(t) = ∆z(t) to

dy(t) = f ′ {s(t−)}µdt+ f {s(t)} − f {s(t−)} .

The above analysis is interesting for it means that the portfolio V = y − δs, where δ =
f {s(t−) + 1} − f {s(t−)} has the important property that, if a riskless interest rate r exists,
then

dV = dy − δds = f ′ {s(t−)}µdt
is instantly riskless and so the porfolio must grow at the riskless rate dV = rV dt. As this
argument does not need us to specify a utility function we can price y as if all agents were risk
neutral (Cox and Ross (1976)) and so price contingent assets not under s but under the risk
neutral process rt + {z(t)− Ez(t)}. This argument is simply a continuous time version of a
standard binomial tree, for it relies on knowing that the value of the portfolio will either jump
or not jump by one unit. It implies that familiar Black-Scholes analysis, based on Brownian
motion and hedging, is not upset by jumps of known size.

Equivalent martingale measure (EMM) An equivalent measure is defined as a measure Qt

such that the Radon-Nikodym derivative dQt/dPt is strictly positive, where Pt is the measure of
the original z process from time 0 up to time t. It implies that the support of the process under
Qt must be the same as the original process for the z process. This means Q must correspond to
the measure generated by a counting process to be an equivalent measure. However, equivalence
does not constrain the intensity of the counting process and so there are an infinite number of
equivalent measures for this problem. This is standard in financial economics.

1This exposition was suggested to us by George Konaris, who we thank for allowing us to use it here.
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In order for Qt to be an equivalent martingale measure (EMM) we additionally need

EQt

{
e−r(t−s)z(t)|Fs−

}
= z(s−), (2.5)

that is the discounted price process must be a martingale under Qt. Thus we have to find the
intensity (which can depend upon the filtration) which deliver this martingale. By taking t to
be very close to s in (2.5) it is easy to see there is only one possibility when z(t−) > 0,

ψ(t) = rz(t−),

so the intensity will increase with the level of the Poisson process.

Compound Poisson process

Introduction Suppose {N(t)}t≥0 is a Poisson process and {cs} is an i.i.d. sequence. Then
define a compound Poisson process as

z(t) =

N(t)∑

s=1

cs, where z(0) = 0 and
0∑

s=1

cs = 0. (2.6)

That is z(t) is made up of the addition of a random number N(t) of i.i.d. random variables.
This is a Lévy process for the increments of this process

z(t+∆)− z(t) =
N(t+∆)∑

s=N(t)+1

cs

are independent and are stationary as the increments of the Poisson process are independent
and stationary.

At this point it is important to note that there is no added flexibility if the distribution of
the {cs} is allowed to have an atom at zero for this would, in effect, just knock out or thin some
of the Poisson process arrivals. Hence this is ruled out a priori. This point will recur in our later
exposition. It is informative to note that

K {θ ‡ z(1)} = log [E exp {−θz(1)}]
= log

[
EN(1)Eexp {−θz(1)} |N(1)

]

= log
〈
Eexp

[
N(1)K {θ ‡ c1}

]〉

= K
{
K(θ ‡ c1) ‡N(1)

}

= −ψ
{
1− expK (θ ‡ c1)

}
.

Example 1 Figure 2.1(b) gives a simulation using cs
i.i.d.∼ IG(1, 1), taking exactly the same

Poisson process draws as used in Figure 2.1(a). The resulting K {θ ‡ z(1)} is

−ψ
〈
1− exp

[
δ

{
γ −

(
γ2 + 2θ

)1/2}]〉
.

Ito formula for a compound Poisson process Suppose y(t) = f(s(t)) where s(t) = µt +
z(t). This case repeats the SDE from the Poisson process example which again simplifies to

dy(t) = f ′ {s(t−)}µdt+ [f {s(t)} − f {s(t−)}] .
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However, now

f {s(t)} − f {s(t−)} =

{
0, if ∆N(t) = 0

f
{
s(t−) + cN(t)

}
− f {s(t−)} , if ∆N(t) = 1.

=
[
f
{
s(t−) + cN(t)

}
− f {s(t−)}

]
∆N(t).

Here cN(t) is the random innovation of the compound Poisson process.
When we construct a portfolio V = y−δs it is not possible to find a δ to make dV determin-

istic for cN(t) is not known at time t−. This is a crucial observation for it implies any compound
Poisson process yields an incomplete financial market and prices of contingent claims cannot
be determined simply using hedging. Some introduction of a utility function will be necessary.
This will be discussed in detail in our second book.

Examples of infinite activity Lévy processes

Gamma process The Poisson process and the compound process are by far the most well-
known non-negative Lévy processes. The jumps happen, typically, rather rarely. Consequently
increments to these processes are often exactly zero, even when measured over quite large time
intervals. This feature of the process is fundamentally different from the gamma Lévy process.
A gamma Lévy process z makes z(1) obey a gamma law

z(1) ∼ Γ(ν, α), ν, α > 0,

with density

fz(1)(x) =
αν

Γ (ν)
xν−1 exp (−αx) , x > 0. (2.7)

Here 2ν is thought of as a degrees of freedom parameter, controlling the skewness of the distri-
bution. The other parameter, α, is a scale parameter.

The kumulant function of the gamma distribution is

K(θ ‡ z(1)) = ν log

(
1 +

θ

α

)
,

which implies z(t) ∼ Γ(νt, α). The gamma process has the useful property that it has increments
which are strictly positive whatever small time interval has elapsed. Such Lévy processes are
said to have infinite activity . This feature puts them apart from a compound Poisson process.

A sample path of a gamma process is drawn in Figure 2.2(a). The path is not continuous
(anywhere). It was drawn by splitting time into intervals of length 1/2000 and sampling from
the implied random walk with Γ(ν/2000, α) distribution. Very similar paths are produced by
using smaller time intervals. The process is a rough upward trend with occasional large shifts.

Inverse Gaussian process An inverse Gaussian (IG) process z requires the Lévy process
at time one to follow an inverse Gaussian distribution z(1) ∼ IG(δ, γ), where δ > 0, γ ≥ 0, with
density

fz(1)(x) =
δ√
2π
eδγx−3/2 exp

{
−1

2

(
δ2x−1 + γ2x

)}
, x > 0.

This implies

K(θ ‡ z(1)) = δ

{
γ −

(
γ2 + 2θ

)1/2}
.

Like the gamma process, the IG process has an infinite number of jumps in any small interval
of time. Most of these jumps are tiny, while occasionally there are larger upwards movements.
The form of the cumulant function implies z(t) ∼ IG(tδ, γ).

15



0 2 4 6 8 10

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200
(a) Simulated Γ(4,200) Lévy process
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Figure 2.2: Simulated Γ and IG Lévy processes, using intervals of length 1/2000. Code
levy graphs.ox.

A sample path of an IG Lévy process is drawn in Figure 2.2(b). The parameters were selected
to have the same mean and variance of z(1) as that used to draw the path of the gamma process
given in Figure 2.2. Again the process is a rough upward trend with occasional large shifts.

Some other non-negative processes A reciprocal (inverse) gamma (RΓ) process z requires
the Lévy process at time one to be a reciprocal gamma variable z(1) ∼ RΓ(ν, α), α, ν > 0,with
density

fz(1)(x) =
αν

Γ(ν)xν+1
exp

(
−αx−1

)
, x > 0.

We should note that, by construction, z(1)−1 ∼ Γ(ν, α). Only the moments of order less than ν
exist for this distribution.

Problematically, sums of independent reciprocal gamma variables are not distributed as
reciprocal gamma. However, it has been shown by rather involved methods that the reciprocal
gamma is infinitely divisible (and so yields a Lévy process), although we do not know the
distribution of z(t) in closed form. This makes simulation of this process more difficult, however
we will show later that we can use computationally intensive methods to simulate the process.

A lognormal (LN) process z requires the Lévy process at time one to be a lognormal variable
z(1) ∼ LN(µ, σ2), σ2 ≥ 0, with density

fz(1)(x) =
1

x
√
2π

exp

{
− 1

2σ2
(log x− µ)2

}
, x > 0.

The proof that the lognormal is infinitely divisible is probabilistically challenging. However it
has been established and so the lognormal provides a valid basis for a Lévy process even though
sums of independent lognormals are not lognormal.

A reciprocal (inverse) Gaussian (RIG) process z requires the Lévy process at time one to be

16



a reciprocal inverse Gaussian variable z(1) ∼ RIG(δ, γ), δ > 0, γ ≥ 0, with density

fz(1)(x) =
γ√
2π
eδγx−1/2 exp

{
−1

2

(
δ2x−1 + γ2x

)}
, x > 0.

The corresponding kumulant function is

K(θ ‡ z(1)) = −1

2
log

(
1 + 2θ/γ2

)
+ δγ

{
1−

(
1 + 2θ/γ2

)1/2}
.

We should note that, by construction, z(1)−1 ∼ IG(γ, δ). Again sums of independent RIG
variables are not distributed as RIG, however we show in Part II that the RIG distribution is
infinitely divisible and so supports a Lévy process.

Similar remarks hold for the positive hyperbolic (PH) process which requires that z(1) ∼
PH(δ, γ), δ > 0, γ ≥ 0, with density

fz(1)(x) =
(γ/δ)

2K1(δγ)
exp

{
−1

2
(δ2x−1 + γ2x)

}
, x > 0.

Here K1(·) is a modified Bessel function of the third kind. All of the moments of this infinitely
divisible distribution do exist if γ > 0, however, the distribution of z(t) is unknown (except
when t = 1) and we cannot directly simulate from it without using intensive methods.

In the special case of δ → 0, then

fz(1)(x) =
γ2

2
exp

(
−1

2
γ2x

)
, x > 0,

which is the exponential distribution Γ(1, γ2/2). This is also a special case of the gamma process
given in (2.7). Indeed at time t the exponential Lévy process has z(t) ∼ Γ(t, γ2/2).

We will call the inverse of a positive hyperbolic random variable a reciprocal positive hyper-
bolic (RPH). It leads to an RPH process which requires that z(1) ∼ RPH(δ, γ), δ > 0, γ ≥ 0,
with density

fz(1)(x) =
(δ/γ)

2K1(δγ)
x−2 exp

{
−1

2
(δ2x−1 + γ2x)

}
, x > 0.

This distribution is again infinitely divisible but is again difficult to work with.

Generalised inverse Gaussian process The above infinite activity processes are all special
cases of the generalized inverse Gaussian (GIG) process. This puts

z(1) ∼ GIG(ν, δ, γ),

with GIG density

fz(1)(x) =
(γ/δ)ν

2Kν(δγ)
xν−1 exp

{
−1

2
(δ2x−1 + γ2x)

}
, x > 0, (2.8)

where again Kν(·) is a modified Bessel function of the third kind. This density has been shown
to be infinitely divisible and so supports a whole nesting class of Lévy processes. Prominent
special cases are achieved in the following ways:

IG(δ, γ) = GIG(− 1
2 , δ, γ), PH(δ, γ) = GIG(1, δ, γ),

RΓ(ν, δ2/2) = GIG(−ν, δ, 0), Γ(ν, γ2/2) = GIG(ν > 0, 0, γ),
RIG(δ, γ) = GIG( 12 , δ, γ), PHA(δ, γ) = GIG(0, δ, γ)
RPH(δ, γ) = GIG(−1, δ, γ).
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Here all these distributions are familiar except for the positive hyperbola distribution, which is
denoted PHA. In order to obtain these results we have to allow δ or γ to be zero 0. In these
cases the GIG’s density has to be interpreted in the limiting sense, using the well-known results
that for x ↓ 0 we have

Kν(x) ∼





− log x if ν = 0

Γ(|ν|)2|ν|−1x−|ν| if ν 6= 0.

.

In general, of course, the distribution of the increments to this process are unknown and we
cannot directly simulate from it without using intensive methods.

2.3.2 Lévy measures for non-negative processes

Cumulant function

It should be clear by now that the cumulant function of z(1) plays an important role in Lévy
processes. In this subsection this observation will be further developed in order to build towards
the vital Lévy-Khintchine representation which shows us the form characteristic functions of
Lévy processes must obey. As this representation is so important, and is also mathematically
involved, development will be carried out in stages. At first sight this looks unnecessary from
a modelling viewpoint, however we will see that practical modelling will sometimes be carried
out directly via some of the terms which make up the Lévy-Khintchine representation. Hence a
good understanding of this section is essential for later developments.

Poisson and compound processes

To start off with think of a Poisson process, so that z(1) ∼ Po(ψ). Then, writing δ1(x) as the
Dirac delta centred at x = 1, we write

K{θ ‡ z(1)} = −ψ(1− e−θ)

= −ψ
∫ ∞

0
(1− e−θx)δ1(x)dx,

= −ψ
∫ ∞

0
(1− e−θx)P (dx),

where P is the Dirac delta probability measure centred at one. The introduction of the proba-
bility measure is entirely expository in this context, however expressing kumulant functions in
this type of way will become essential later. Before proceeding another level of abstraction has
to be introduced. Instead of working with probability measures we will have to use more general
measures W concentrated on R+. An important point is that some of the measures that will be
used later will not be integrable (that is

∫∞
0 W (dx) = ∞) and so probability measures are in-

sufficient for a discussion of Lévy processes. In the simple Poisson case measures are introduced
by expressing

K{θ ‡ z(1)} = −
∫ ∞

0
(1− e−θx)W (dx) (2.9)

where W = ψδ1 is called the Lévy measure. Of course this measure is integrable, indeed it
integrates to ψ.

Let us now generalise the above setup to the compound Poisson process (2.6), but still
requiring {cs} to be strictly positive — ruling out the possibility that cs can be exactly zero
with non-zero probability. Then, writing the distribution function of c1 as P (x ‡ c1),

K{θ ‡ z(1)} = −ψ
{
1− expK (θ ‡ c1)

}
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= −ψ
∫ ∞

0
(1− e−θx)P (dx ‡ c1)

= −
∫ ∞

0
(1− e−θx)W (dx),

again, but now with W (dx) = ψP (dx‡c1). Again this measure is integrable as it is proportional
to the probability measure. In the simple case where c1 has a density we write

W (dx) = w(x)dx

and call w(x) (which is ψ times the density of c1) the Lévy density . In such cases the kumulant
function becomes

K{θ ‡ z(1)} = −
∫ ∞

0
(1− e−θx)w(x)dx.

A simple example of this is where cs
i.i.d.∼ Γ(ν, α). Then the Lévy density is

w(x) = ψ
αν

Γ (ν)
xν−1 exp (−αx) .

Of course this Lévy density integrates to ψ — not one.
Although Poisson and compound processes have integrable Lévy measures (for W is pro-

portional to a probability measure which integrates to one) theoretically more general Lévy
processes can be constructed without abandoning the form (2.9). The non-integrable measures
W will not correspond to compound Poisson processes. To ensure that they yield a valid ku-
mulant function we require that

∫∞
0 (1 − e−θx)W (dx) exists, while continuing to rule out the

possibility that W has an atom at zero. It is simple to prove that a necessary and sufficient
condition for

∫∞
0 (1− e−θx)W (dx) to exist is that

∫ ∞

0
min (1, x)W (dx) <∞.

If the Lévy measure is absolutely continuous then we can define w(x) as the Lévy density
where W (dx) = w(x)dx. However, as some Lévy measures are not integrable, it follows that
Lévy densities are not necessarily integrable. This is at first sight confusing. This point comes
up in the following two examples.

Example 2 It turns out that the Lévy density of z(1) ∼ IG(δ, γ) is

w(x) = (2π)−1/2 δx−3/2 exp(−γ2x/2), x ∈ R+. (2.10)

This Lévy density is not integrable as it goes off to infinity too rapidly as x goes to zero. This
is important for it implies an IG process is not a compound Poisson process. Although the
Lévy density is not integrable it does satisfy the finiteness condition on

∫∞
0 min (1, x)W (dx)

for the addition of the x factor regularises the density near zero (it behaves proportionally to a
Γ(1/2, γ2/2) variable for x ≤ 1).

Example 3 It can also be shown that the Lévy density of z(1) ∼ Γ(ν, α) is

w(x) = νx−1 exp(−αx), x ∈ R+. (2.11)

Again this is not an integrable Lévy density although it is slower to go off to infinity than the
inverse Gaussian case. This mean in practice that it will have a smaller number of very small
jumps than the IG process.
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These two results are special cases of the result for the GIG(ν, δ, γ) probability density (2.8).
The corresponding Lévy density is then

w(x) = x−1
[
1

2

∫ ∞

0
e−

1
2
δ−2xξgν(ξ)dξ +max{0, ν}λ

]
exp

(
−γ2x/2

)
(2.12)

where

gν(x) =
2

xπ2

{
J2
|ν|(
√
x) +N2

|ν|(
√
x)
}−1

and Jν and Nν are Bessel functions. This result is derived in Part II of this book. Although
this looks forbidding, when ν is a half integer these functions are analytically tractable.

Example 4 An example outside the GIG class is the positive stable PS(α, δ) process. Although
the probability density of this variable is unknown in general, the cumulant function is

K {θ ‡ z(1)} = −δ (2θ)α , 0 < α < 1, δ > 0,

which implies it does not possess any moment. The Lévy density for a positive stable Lévy
process is given by

w(x) = Cx−1−α, where C = δ2α
α

Γ (1− α) , (2.13)

while z(t) ∼ PS(α, tδ).

2.3.3 Lévy-Khintchine representation for non-negative processes

Representation

Having allowed the Lévy measure not to be integrable, a single extra step is required in order
to produce a general setup. We allow a drift a > 0 to be added to the cumulant function. This
is carried out in the following fundamental theorem.

Theorem 2.1 Lévy-Khintchine representation for non-negative Lévy processes. Suppose z is a
Lévy process with non-negative increments. Then the kumulant function can be written as

K{θ ‡ z(1)} = −aθ −
∫ ∞

0

(
1− e−θx

)
W (dx) (2.14)

where a ≥ 0 and W is a measure on R+ such that

∫ ∞

0
min{1, x}W (dx) <∞. (2.15)

Conversely, any pair (a,W ) with these properties determines a non-negative Lévy process z such
that z(1) has kumulant function determined by (2.14).

The importance of this representation is that the kumulant function of all non-negative
Lévy processes can be written in this form. In other words, non-negative Lévy processes are
completely determined by a and the Lévy measure W (which has to satisfy (2.15)). No other
feature is necessary.

In the special case when
∫∞
0 W (dx) <∞ we say that z is of finite activity — indeed all such

processes can be written as a compound Poisson process. In cases where this does not hold, z
is said to be an infinite activity process.
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Models via the Lévy density: tempered stable process

An important implication of the Lévy-Khintchine representation is that Lévy processes can be
built by specifying a and W directly, implying the probability density of z(1). An important
example of this is the tempered stable, TS(κ, δ, γ), class which tilts the Lévy density of the
positive stable. The result is

w(x) = δ2κ
κ

Γ (1− κ)x
−κ−1 exp

(
−1

2
γ1/κx

)
, x, δ > 0, 0 < κ < 1, γ ≥ 0, (2.16)

which means the process has infinite activity. The density of z(1) is not generally known,
however the Lévy density plays such a crucial role that this difficulty is not overly worrying.
Special cases of this structure include the IG Lévy density (2.10) and the Γ Lévy density (2.11),
which is the limiting case of κ ↓ 0. Notice the constraint that κ < 1 is essential in order to
satisfy the condition (2.15) in the Lévy-Khintchine representation. The corresponding kumulant
function is

K{θ ‡ z(1)} = δγ − δ
(
γ1/κ + 2θ

)κ
,

while the corresponding first two cumulants are

2κδγ(κ−1)/κ and 4κ (1− κ) δγ(κ−2)/κ.

Finally the cumulant function implies the convenient property that z(t) ∼ TS(κ, tδ, γ).

2.4 Processes with real increments

2.4.1 Examples of Lévy processes

Motivation

In this section the focus will be on Lévy processes with innovations which are on the real line.
Many of them play important roles in financial economics as direct models of financial assets.

Brownian motion

In financial economics the most frequently used Lévy process is Brownian motion. It is the basic
model of the log-price of a risky asset. In the simplest case of (standard) Brownian motion we
write

z(1) ∼ N(0, 1),

with density

fz(1)(x) =
1√
2π

exp

(
−1

2
x2
)
, x ∈ R,

while

K {θ ‡ z(1)} = log [E exp {θz(1)}] = 1

2
θ2.

The implication of this is that marginally z(t) ∼ N(0, t), while increments

z(t+∆)− z(t) ∼ N(0,∆).

A standard Brownian motion, written b(t), can be generalised to allow for innovations with a
non-zero mean and a different scale than one. A drift µ and a volatility term σ can be introduced
to deliver the Lévy process
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Figure 2.3: (a) Sample path of
√
0.02 times standard Brownian motion with z(0) = 0. (b)

Sample path of a NIG(0.2,0,0,10) Lévy process with z(0) = 0. Thus the increments of both
processes have the same variance. Code: levy graphs.ox.

z(t) = µt+ σb(t)

∼ N(µt, tσ2),

with increments
z(t+∆)− z(t) ∼ N(µ∆, σ2∆).

The associated cumulant function for z(1) is µθ + 1
2θ

2σ2.
A graph of a sample path from standard Brownian motion is displayed in Figure 2.3(a). It

illustrates that the path is continuous. In a moment we will see that Brownian motion is the
only Lévy process with this property — all other Lévy processes have jumps.

Compound process

Compound processes were introduced in (2.6), but there we required the shocks {cs} to be
strictly positive. Here this condition is relaxed, just ruling out that they have an atom at zero.
In this case, again,

K {θ ‡ z(1)} = log [E exp {θz(1)}]
= ψ {expK (θ ‡ c1)− 1} .

Example 5 Suppose cs
i.i.d.∼ N(µ, σ2), then

K {θ ‡ z(1)} = ψ

{
exp

(
µθ +

1

2
θ2σ2

)
− 1

}
.

So here the Lévy process is constant until a new arrival from the Poisson process. The arrival
then moves the Lévy process by a Gaussian variable. This variable can have a non-zero mean
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and a non-unit variance. It was discussed in some detail in the first Chapter of this book. This
is an important model in practice for quite a lot of effort has been expended on working on the
derivative pricing theory associated with this simple structure.

Location scale mixture processes

Normal inverse Gaussian process If we assume σ2 ∼ IG(δ, γ) and ε is an independent
standard normal variable then

y = µ+ βσ2 + σε ∼ NIG(α, β, µ, δ), where α =
√
β2 + γ2

has a normal inverse Gaussian (NIG) distribution. If µ = β = 0 then this random variable is
centred at zero, while if β < 0 it is skewed with a longer left hand tail. Further, µ is a free
parameter which helps control the mean of the process, with E(y) = µ+βδγ−1. The NIG Lévy
process puts

z(1) ∼ NIG(α, β, µ, δ), µ ∈ R, δ ∈ R+, 0 ≤ β < α

which has the density

fz(1)(x) = a(α, β, µ, δ)q

(
x− µ
δ

)−1
K1

{
δαq

(
x− µ
δ

)}
exp {β (x− µ)}

where q(x) =
√
1 + x2 and

a(α, β, µ, δ) = π−1α exp

{
δ
√
α2 − β2 − βµ

}
.

Sometimes it is convenient to reparameterise this model. A popular local-scale invariant choice
is achieved by defining

ξ =

(
1 + δ

√
α2 − β2

)−1/2
and χ =

β

α
ξ, (2.17)

where ξ, the steepness parameter, and χ, the asymmetry parameter, obey a triangular constraint

{(χ, ξ) : −1 < χ < 1, 0 < ξ < 1} . (2.18)

The flexibility of the model is shown in Figure 2.4, which displays the log-density for a variety
of values of χ, ξ. Such a plot is called a shape triangle. As ξ → 0 so the log-density becomes
more quadratic, while for values around 0.5 the tails are approximately linear. For larger values
of ξ the tails start decaying at a rate which looks appreciably slower than linear. In the limit as
ξ → 1 the density becomes a Cauchy variable.

This model has recently received considerably attention as a tractable alternative to Brow-
nian motion as a model of log asset prices. One of its advantages is that the resulting cumulant
function is

K(θ ‡ z(1)) = δ

{√
α2 − β2 −

√
α2 − (β + θ)2

}
+ µθ,

implying z(t) ∼ NIG(α, β, tµ, tδ). In particular this implies its increments are non-zero with
probability one. A sample path of a NIG Lévy process is drawn in Figure 2.3(b) with the jumps
being of irregular size which implies the very jagged shape of the picture.
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Figure 2.4: Shape triangle for the NIG model. That is we graph the shape of the log-density for
the NIG model for a variety of values of the steepness parameter ξ and the shape parameter χ.
This graph was kindly made available to us by Preben Blæsild.
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Figure 2.5: (a) Sample path of a NΓ(4,200,0,0) Lévy process. Such processes are often called
variance gamma processes in the literature. (b) Sample path of a La(0.2,0,0) Lévy process.
Code: levy graphs.ox.
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Normal gamma process If we assume σ2 ∼ Γ(ν, γ2/2) and ε is an independent standard
normal variable then

y = µ+ βσ2 + σε ∼ NΓ(ν, γ, β, µ),

which we will call the normal gamma distribution. From the cumulant function

K {θ ‡ z(1)} = µθ + ν log

(
1 +

θβ + θ2/2

γ

)
, (2.19)

it follows that z(t) ∼ NΓ(tν, γ, β, tµ), which means this process is particularly simple to handle
and the increments are non-zero. The density of the process at time one is

fz(1)(x) =
γ2ν

(
γ2

2

)1−2ν
√
2πΓ(ν)2ν−1

K̄ν−1/2

(
γ2

2
|x− µ|

)
exp {β (x− µ)} .

In the special case of β = 0 this process has been used extensively in the finance literature
where it is often called the variance gamma (V G) process.

Figure 2.5(a) graphs a simulated path from a NΓ(4, 200, 0, 0) process. As we would expect,
the sample path has some of the features of the NIG process we drew in Figure 2.3(b). In
particular it is very jagged.

Hyperbolic and Laplace processes If we assume σ2 ∼ PH(δ, γ) and ε is an independent
standard normal variable then

y = µ+ βσ2 + σε ∼ H(α, β, µ, δ), where α =
√
β2 + γ2,

has the hyperbolic distribution. This distribution can be shown to be infinitely divisible, al-
though the proof of this is difficult. The hyperbolic process puts z(1) ∼ H(α, β, µ, δ), where the
density is

fz(1)(x) =
γ

2
√
β2 + γ2δK1 (δγ)

exp

{
−α
√
δ2 + (x− µ)2 + β (x− µ)

}
, x ∈ R. (2.20)

All the moments of this process exist so long as γ > 0, while the cumulant function is

K(θ ‡ x) = 1

2
log

{
γ2

α2 − (β + θ)2

}
+ log





K1

{
δ
√
α2 − (β + θ)2

}

K1 (δγ)





+ θµ. (2.21)

The hyperbolic model is again rather flexible. We can compare it to the NIG density using the
shape triangle. In particular reparameterise into the location-scale invariant parameters given
in (2.17), then Figure 2.6 shows the log-densities for this model. We see that again as ξ → 0 we
get the normal quadratic log-density. For higher values the log-density gets increasingly linear
decay in the tails as ξ → 1. Indeed in the limit we get the Laplace density as the model. This
contrasts with the NIG density which has the ability to have thicker tails than this density.
Hyperbolic models have the interesting and important feature that the log-density of z(1) is
approximately linear in the tails of the distribution (rather than quadratic in the normal case,
and the corresponding Brownian motion at time one).

Hyperbolic Lévy processes have the disadvantage that we do not have an exact expression
for the density of z(t) for t 6= 1, nor can we simulate from the process in a non-intensive manner.
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Figure 2.6: Shape triangle for the hyperbolic model. That is we graph the shape of the log-
density for the hyperbolic model for a variety of values of the steepness parameter ξ and the
shape parameter χ. This graph was kindly made available to us by Preben Blæsild.

Both of these properties are inherited from the fact that this is also the case for the positive
hyperbolic process we discussed in the previous section.

The Laplace distributions (symmetric and asymmetric) occur as limiting cases of (2.20) for
α, β and µ fixed and δ ↓ 0. We write this as La(α, β, µ). The corresponding density is

α2 − β2
2α

exp {−α |x− µ|+ β (x− µ)} , where α =
√
β2 + γ2, (2.22)

which is achieved by σ2 ∼ E(γ2/2) = Γ(1, γ2/2). One of the main features of this model is that
z(t) ∼ NΓ(t, γ, β, tµ), which has the advantage of simple tractability — and is a special case of
the normal gamma process.

Finally, if σ2 ∼ RPH(δ, γ), instead of being positive hyperbolic, then y ∼ RH(α, β, µ, δ),
the reciprocal hyperbolic. This distribution is again infinitely divisible. The RH process puts

fz(1)(x) =

√
α2 − β2

2αδK−1

(
δ
√
α2 − β2

)x−2 exp
{
−α
√
δ2 + (x− µ)2 + β (x− µ)

}
, x ∈ R.

If we assume σ2 ∼ RΓ(ν, δ2/2) and ε is an independent standard normal variable then

y = µ+ βσ2 + σε ∼ T (ν, δ, β, µ),

a skewed Student’s t distribution, which is infinitely divisible and so can be used as the basis of
a Lévy process. The skewed Student’s t process puts z(1) ∼ T (ν, δ, β, µ), where the density is

1√
2πδΓ(ν)2ν−1

q

(
x− µ
δ

)−2ν−1
K̄ν+1/2

{
δβq

(
x− µ
δ

)}
exp {β (x− µ)} ,

where
Kν(x) = xνKν(x) and q(x) =

√
1 + x2.
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The more familiar Student’s t distribution is found when we let β → 0, then the density becomes

Γ (ν + 1/2)√
δ2πΓ(ν)

{
1 +

(
x− µ
δ

)2
}−ν−1/2

.

In both cases this process has the interesting feature that only moments of order less than ν will
exist — at any time horizon. However, we do not know the distribution of z(t) for this process,
while simulation has to be carried out in quite an involved manner. Hence this process is not as
easy to handle as the NIG or normal gamma Lévy processes.

A similar type of complexity occurs if we replace σ2 ∼ RΓ(ν, δ2/2) by a reciprocal inverse
Gaussian distribution, RIG(δ, γ). The resulting mixture distribution is called a normal recipro-
cal inverse Gaussian distribution NRIG(α, β, µ, δ) which can be shown to be infinitely divisible
and so supports a NRIG Lévy process. This process is again hard to work with and so we will
not discuss it in detail here.

Generalized hyperbolic process If we assume σ2 ∼ GIG(ν, δ, γ) and ε is an independent
standard normal variable then

y = µ+ βσ2 + σε ∼ GH(ν, α, β, µ, δ), where α =
√
β2 + γ2,

the generalised hyperbolic distribution. This distribution includes as special cases the normal
(N), normal inverse Gaussian (NIG), normal reciprocal inverse Gaussian (NRIG), hyperbola
(HA), hyperbolic (H), skewed Laplace (La), normal gamma (NΓ) and skewed Student (T )
distributions in the following way:

N(µ, σ2) = limγ→∞GH(ν, γ, 0, µ, σ2γ), NIG(α, β, µ, δ) = GH
(
−1

2 , α, β, µ, δ
)
,

NRIG(α, β, µ, δ) = GH
(
1
2 , α, β, µ, δ

)
, H(α, β, µ, δ) = GH(1, α, β, µ, δ),

T (ν, δ, β, µ) = GH(−ν, β, β, µ, δ), La(α, β, µ) = GH(1, α, β, µ, 0)
NΓ(ν, δ, β, µ) = GH(ν, α, β, µ, 0), RH(α, β, µ, δ) = GH(−1, α, β, µ, δ),

for ν > 0. The generalised hyperbolic distribution is infinitely divisible and so can be used
as the basis of a rather general Lévy process whose special cases obviously include Brownian
motion with drift and the NIG, hyperbolic, hyperbola, NRIG, normal gamma, skewed Laplace
and skewed Student Lévy processes. The proof of infinite divisibility of this distribution is
involved but will be discussed in Part II of our book. The generalised hyperbolic process puts
z(1) ∼ GH(ν, α, β, µ, δ), where the density is

(γ/δ)ν

√
2πα2(ν−

1
2)Kν (δγ)

{
αδq

(
x− µ
δ

)}(ν− 12)
K(ν− 12)

{
αδq

(
x− µ
δ

)}
exp {β (x− µ)} , (2.23)

where q(x) =
√
1 + x2 and Kν is the modified Bessel function of the third kind. It is helpful to

recall that Kν(x) = Kν(−x). The cumulant function is

K(θ ‡ x) = ν

2
log

{
γ

α2 − (β + θ)2

}
+ log





Kν

{
δ
√
α2 − (β + θ)2

}

Kν

{
δ
√
α2 − β2

}





+ θµ, |β + θ| < α,

while the first two moments are

E(X) = µ+ β
δ

γ

Kν+1(δγ)

Kν(δγ)
and

Var(X) = δ2
〈
Kν+1(δγ)

δγKν(δγ)
+
β2

γ2

[
Kν+2(δγ)

Kν(δγ)
−
{
Kν+1(δγ)

Kν(δγ)

}2
]〉

.
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It is helpful to reexpress this density in a new alternative format. We do this by defining
Kν(x) = xνKν(x), noting that Kν(x) = K−ν(x) and setting up some scale invariant parameters

α = δα, β = δβ, γ = δγ.

Then the density becomes

• for ν > 0
γ2να1−2ν

δ
√
2πK̄ν(γ̄)

K̄ν−1/2

{
αq

(
x− µ
δ

)}
exp

{
β

(
x− µ
δ

)}
,

• for ν = −ν > 0

1√
2πδK̄ν(γ̄)

q

(
x− µ
δ

)−2ν−1
K̄ν+1/2

{
αq

(
x− µ
δ

)}
exp

{
β

(
x− µ
δ

)}
.

Not surprisingly, in general we do not know the GH density of z(t) for t 6= 1, nor can we
simulate from the process in a non-intensive manner. This model is so general that it is typically
difficult to manipulate mathematically and so is not often used empirically. Instead special cases
are usually employed.

Symmetric stable processes One of the most studied Lévy processes is the symmetric stable
process. This puts

z(1) ∼ S(α, δ), 0 < α ≤ 2, δ > 0,

a symmetric stable distribution with index α. Except for the boundary case of α = 2, this
distribution has the empirically unappealing feature that the variance of z(1) is infinity. The
density of this variable is unknown in general, with exceptions being the Gaussian variable
(α = 2), the Cauchy variable (α = 1) and the Lévy variable (α = 1/2). Despite the complexity
of the density the cumulant function is simply

K {θ ‡ z(1)} = δθα,

which implies z(t) ∼ S(α, tδ). The Lévy density for a symmetric stable process is given by

w(x) = δ |x|−1−α , 0 < α < 2.

Stable processes have the remarkable property that for λ > 0

{z(λt)}t≥0
L
=
{
λα/2z(t)

}
t≥0

.

Thus, in particular, increments of the Lévy process over time λt are, in distribution, just scaled
versions of increments over time t. This fractal like property is called self-similarity and the
stable Lévy processes (symmetric or not) are the only Lévy processes which possess this feature.

Although stable processes have received considerable attention in financial economics since
their introduction into that subject in the early 1960s, it has been known since the late 1960s
that they provide a poor fit to the empirical data we usually see in practice. This is because
returns over long time intervals, which are sums of returns over finer time intervals, tend to be
more Gaussian than ones over short horizons. Hence our interest in this type of process will
usually be to provide theoretical illustrations, rather than as practical models.
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Normal tempered stable process If we assume σ2 ∼ TS(κ, δ, γ) and ε is an independent
standard normal variable then

y = µ+ βσ2 + σε ∼ NTS(κ, δ, γ, β, µ),

a normal tempered stable distribution, which is infinitely divisible and so can be used as the
basis of a Lévy process. This process has as special cases the NIG Lévy process and the normal
gamma Lévy process (when κ ↓ 0). This process will be discussed in more detail in a later
section.

Some other Lévy processes living on the real line

Truncated Lévy flights If the Lévy density of the stable process is truncated, so that

w(x) =

{
c |x|−1−α for x ∈ [−l, l]
0 otherwise,

where c, l > 0, then it can be shown that this again supports a Lévy process where z(1) has a
finite variance. This process is called a truncated Lévy flights process. This has received some
interest in the context of the econophysics literature.

Extended Koponen class Another example of a Lévy process specified through the Lévy
density is the KoBoL (after Koponen, Boyarchenko and Levendorskii) or extended Koponen
class. This puts

w(x) =





C−|x|−1−Ae−B−|x| for x < 0

C+x
−1−Ae−B+x for x > 0.

(2.24)

This process is sometimes referred to as a CGMY Lévy process (after Carr, Geman, Medan and
Yor).

Meixner process The density of a Meixner random variable, written Meixner(a, b, d, µ), is

fz(1)(x) =
{2 cos (b/2)}2d

2aπΓ(2d)
exp

{
β (x− µ)

a

} ∣∣∣∣Γ
(
d+

i (x− µ)
a

)∣∣∣∣
2

, i =
√
−1,

which has the cumulant function

C{ζ ‡ z(1)} = iµζ + 2d log





cos (β/2)

cosh
(
aζ−iβ

2

)



 .

The resulting process is obviously infinitely divisible and so supports a Lévy process with z(t) ∼
Meixner(a, b, dt, µt). Further, the Lévy density is

w(x) = d
ebx/a

x sinh(πx/a)
,

and so we can see that this Lévy process has infinite activity. Unfortunately we do not know a
simple way of simulating from this distribution.

29



2.4.2 Lévy-Khintchine representation

The Lévy-Khintchine representation for positive variables given in (2.14) can be generalised to
cover Lévy processes with increments on the real line. Three basic developments are needed.
First, the Lévy measure must be allowed to have support on the real line, not just the positive
half-line, but still excluding the possibility that the measure has an atom at zero. Second, the
parameter a needs to be allowed to be a real variable, not just positive. Third, we imagine
that an independent Brownian motion component is added to the process. The result is the
celebrated Lévy-Khintchine representation for Lévy processes.

Theorem 2.2 Lévy-Khintchine representation. Suppose z is a Lévy process. Then the log of
the characteristic function can be written as

C{ζ ‡ z(1)} = aiζ − 1

2
σ2ζ2 −

∫

R

{
1− eiζx + iζx1B(x)

}
W (dx), (2.25)

where a ∈ R, σ ≥ 0, B = [−1, 1] and the Lévy measure W must satisfy

∫

R
min{1, x2}W (dx) <∞ (2.26)

and W has no atom at 0.

Lévy processes are completely determined by the characteristic triplet : a, the variance σ2 of
the Brownian motion and the Lévy measureW (which has to satisfy (2.26)). No other feature is
necessary and every such triplet

(
a, σ2,W

)
specifies a Lévy process. Importantly only processes

with W = 0 do not have jumps — but in that case z is a scaled Brownian motion.

2.5 Time deformation, chronometers and subordinators

2.5.1 Definitions

Financial markets sometimes seem to move rapidly. One way of starting to model this is to allow
the relationship between standard calendar time and the pace of the market to be random. We
call a stochastic process which models the random clock a chronometer , while the resulting
process is said to be time deformed or subordinated . The use of the nomenclature chronometer
in this context is new.

Definition 2 A chronometer is any non-decreasing random process. The special case where the
chronometer has independent and stationary increments is called a subordinator.

The requirement that the chronometer is non-decreasing rules out the chance that time can
go backwards. A special case of a chronometer is a subordinator, while subordinators are special
cases of Lévy processes (e.g. Poisson or IG Lévy processes are subordinators). All subordinators
are pure upward jumping processes. We should note here that the finance literature typically
labels chronometers subordinators, while the probability literature only discusses deformation
in the context of Lévy processes.

In this section we will study what happens when a subordinator is used to change the clock,
that is deform, a stochastically independent Lévy process. Write v(t) and τ(t) as independent
Lévy processes, the latter being a subordinator used to model the random clock. The result is

z(t) = v(τ(t)).
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The increments of this process are

z(t+∆)− z(t) = v(τ(t+∆))− v(τ(t))
= v(τ(t) + {τ(t+∆)− τ(t)})− v(τ(t)),

which are independent and stationary and so z is a Lévy process.
Brownian motion is the only Lévy process with continuous sample paths, however this prop-

erty does not survive being deformed by a subordinator.
The subordinator must be a pure jump process — jumping upwards at random times. At

each instant of a jump z(t) must (with probability one) also jump, while in instants where the
subordinator does not jump the level of z(t) is left unchanged.

2.5.2 Examples

Brownian motion with a Poisson subordinator

Assume v(t) ∼ N(βt, σ2t) is a scaled Brownian motion with drift and that it is deformed by a
Poisson process with intensity ψ. Then

z(1)|τ(1) ∼ N(βτ(1), σ2τ(1)).

This is a compound Poisson process

0 1 2 3 4 5 6 7 8 9 10
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2

3
(a) Simulated deformed Brownian motion by Poisson process

0 1 2 3 4 5 6 7 8 9 10 11 12 13
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(b) Original Brownian motion

0 1 2 3 4 5 6 7 8 9 10

5

10

(c) Poisson process subordinator

Figure 2.7: Figure (a) deformed Brownian motion using a Poisson process subordinator. Figure
(b) path of the Brownian motion. Figure (c) Poisson process subordinator. Code: levy code.ox.

z(t) =

τ(t)∑

j=1

cj , cj
i.i.d.∼ N(µ, σ2), (2.27)

with shocks which are Gaussian. The implication is that when the process jumps, the jumps
are independent of the time we have waited until the jump. An example of a sample path from
this process is given in Figure 2.7. The jumps now go up as well as down, with the jump sizes
being random.
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Brownian motion subordinated by IG — the NIG Lévy process

Suppose τ(t) is an inverse Gaussian Lévy process with τ(1) ∼ IG(δ, γ) and v(t) is Brownian
motion with drift β. Then z(t) is a Lévy process. In particular

z(1)|τ(1) ∼ N(βτ(1), τ(1))

and so unconditionally the increments are independent with

z(1) ∼ NIG(α, β, 0, δ), α2 = β2 + γ2.

Hence this deformed Brownian motion is a special case of the normal inverse Gaussian Lévy
process, which we simulated in Figure 2.2(b).

Normal tempered stable Lévy process

Suppose τ(t) is a tempered stable TS(κ, δ, γ) Lévy process, with Lévy density given in (2.16).
It is a subordinator. Then if we assume bβ(·) is Brownian motion plus drift and we write

z(t) = µt+ bβ(τ(t)),

then z is called a normal tempered stable (NTS) Lévy process. We write

z(1) ∼ NTS(κ, α, β, µ, δ),

but the corresponding probability density is generally unknown (except for an infinite series
representation, see Feller (1971, p. 583)). The cumulant function, on the other hand, is rather
simple

K(θ ‡ z(1)) = µθ + δγ − δ
{
α2 − (β + θ)2

}κ
, where α =

√
β2 + γ1/κ.

The form of this function implies

z(t) ∼ NTS(κ, α, β, µt, δt).

It can be shown (after some considerable work), using the cumulant function of the NTS process,
that the Lévy density is

w(x) =
δ√
2π

κ2κ+1

Γ (1− κ)α
κ+ 1

2 |x− µ|−(κ+
1
2)Kκ+ 1

2
(α |x− µ|) exp {β (x− µ)} .

The direct use of this Lévy density is obviously going to be difficult due to its complexity. The
deformation interpretation will mean that we can usually sidestep this, instead employing the
simple Lévy density of the TS(κ, δ, γ) Lévy process.

Type G Lévy processes

In the probability literature, Lévy processes which can be written as z(t) = µt + bβ(τ(t)), for
some subordinator τ , which we shall call type G Lévy processes — the subset of Lévy processes
for which there is a deformation of Brownian motion interpretation. Many well known Lévy
processes are not in this class.
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2.6 Quadratic variation

2.6.1 Definition and examples

A commonly used measure of continuous time processes in financial economics is the Quadratic
Variation (QV) process. This has two steps. First, time is split into small intervals

tr0 = 0 < tr1 < ... < trmr
= t.

Then the QV process is
[z](t) =p− lim

r→∞

∑
{z(tri+1)− z(tri )}2, (2.28)

where
sup
i
{tri+1 − tri } → 0 for r →∞.

This series looks at the partial sum of squared increments over tiny intervals of time. In
general the QV process of a Lévy process is a (different) Lévy process for the increments are
independent and stationary as QV are just sums the squares of independent and stationary
increments. Further, it can be regarded as a subordinator for the increments are non-negative.
To illustrate these points two examples are given.

Brownian motion

Suppose z is a scaled Brownian motion with drift, such that z(1) ∼ N(µ, σ2). Then

z(tri+1)− z(tri ) ∼ N(
(
tri+1 − tri

)
µ,
(
tri+1 − tri

)
σ2).

For small values of
(
tri+1 − tri

)
the variation in the series dominates — the standard deviation

and drift are O
(√

tri+1 − tri
)
and O

(
tri+1 − t

)
, respectively. As a result [z](t) = tσ2, whatever

the value of µ. The important observation is that the QV is non-stochastic.
This is a particularly interesting result from a statistical viewpoint for it means we can

theoretically estimate σ2 without error using a tiny path of Brownian motion even in the presence
of drift. Of course in practice this is highly misleading argument for the continuous time model
is unlikely to be perfectly specified at very short time horizons.

Brownian motion deformed by a Poisson process

Suppose z is constructed by time deforming a Brownian motion with drift β with a Poisson
process τ , then z is a compound process (2.27) and

[z](t) =

τ(t)∑

j=1

c2j , where cj
i.i.d.∼ N(0, σ2).

Hence the QV is also a compound process with [z](t) ∼ χ2
τ(t). Hence [z](t) is a noisy estimator

of τ(t), but they share the same expectation.

Semimartingales

We noted in section 3 that all Lévy processes were semimartingales, and that when the mean
of the increments of the process existed then they are special semimartingales. This means we
can uniquely write them as

z(t) = a(t) +m(t),
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a predictable component of locally bounded variation and a local martingale, respectively. It is
possible to show that for all semimartingales

[z](t) = [m](t) +
∑

0≤u≤t
{a(u)− a(u−)}2 ,

the quadratic variation of the martingale component plus the sums of squares of the jumps in
the predictable component. In Lévy processes the predictable component is always (if it exists)
a(t) = tE {z(1)} and hence is continuous. Thus this result specialises to

[z](t) = [m](t).

Quadratic variation is very important. One of the reasons for this is that for all local
semimartingales with continuous predictable components

Var(dz(t)|Ft) = E (d[z](t)|Ft) ,

so long as the moments exist.

2.6.2 Realised variance process

Definition and basics

In applied economics it is often inappropriate to study returns over infinitely small time intervals
for our models tend to be highly misspecified at that level due to market microstructure effects.
In particular the idea of a unique price is a fiction for the transaction price tends to depend
upon, for example, the volume of the deal, the reputation of the buyer and seller, prevailing
liquidity (and so time of day) and the initiator (i.e. was it the buyer or the seller). These issues
will be discussed at more length in later chapters. To avoid the worst effects of misspecification,
a finite version of quadratic variation is often used. This is called the realised volatility or
variance process. This splits time into intervals of length δ and computes the corresponding
sum of squares.

The realised variance process is defined, for δ > 0,

[zδ] (t) =
M∑

j=1

[z (δj)− z {δ (j − 1)}]2 , M = bt/δc ,

where btc denotes the largest integer less than or equal to t. We can see that

p− lim
δ↓0

[zδ] (t) = [z](t),

that is the realised variance process is a consistent estimator of quadratic variation. However,
the realised variance process is not a Lévy process — rather it jumps upwards at specified points
in time and so has a number of features of a discrete time random walk.

A numerical example of the realised variance process is given in Figure 2.8, which computes
it for a NIG Lévy process. In this picture we have taken δ = 1 and δ = 1/10, so taking one and
10 squared observations per unit of time, respectively. Also given is the corresponding limit, the
quadratic variation. We see that as δ gets small so the realised variance process becomes a good
approximation of the QV.

In order to understand the connection between the Lévy process, the realised variance process
and the quadratic variation it is helpful to think about the following calculation. Hold t fixed
and set the choice of δ so that M = t/δ, then

E





z(t)
[zδ] (t)
[z](t)





= t



κ1
κ2
κ2


 , Cov





z(t)
[zδ] (t)
[z](t)





= t



κ2 κ3 κ3
κ3 κ4 + 3κ22tM

−1 κ4
κ3 κ4 κ4


 ,
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Figure 2.8: Figure (a) Sample path of NIG(0.2,0,0,10) Lévy process. (b) Sample path of corre-
sponding realised variance process taking δ = 1 — one observation per unit of time. (c) Same
but with δ = 1/10 — ten observations per unit of time. (d) Quadratic variation of the process.
Code: levy code.ox.

where κr denotes the r-th cumulant of z(1). The only one of these results which is not straight-
forward is

Var([zδ] (t)) = Mµ4

[
z(tM−1)

]

= M

{
κ4
[
z(tM−1)

]
+ 3κ2

[
z(tM−1)

]2}

= M
(
tM−1κ4 + 3t2M−2κ22

)
.

Finally we notice the implication that [zδ]− [z] has a zero mean, while

Var 〈[z](t)− {zδ} (t)〉 = 3κ22t
2M−1.

Hence we could use [zδ] as an estimator of [z].
A simple example of this is where z is standard Brownian motion, then κ3 = κ4 = 0, which

means that

E





z(t)
[zδ] (t)
[z](t)





= t



κ1
κ2
κ2


 , Cov





z(t)
[zδ] (t)
[z](t)





= t



κ2 0 0
0 3κ22tM

−1 0
0 0 0


 ,

which makes sense for [z](t) = t. If z is the homogeneous Poisson process, then all the cumulants
are equal to κ1. Thus

E





z(t)
[zδ] (t)
[z](t)





= tκ1ι, Cov





z(t)
{zδ} (t)
[z](t)





= tκ1




1 1 1
1 1 + 3κ1tM

−1 1
1 1 1


 .
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Notice the covariance is singular, for z(t) = [z](t).
A more interesting example occurs when z is scaled Brownian motion which is deformed by

the subordinator τ . Then

K {θ ‡ z(1)} = K

{
1

2
θ2σ2 ‡ τ(1)

}
.

This implies
κ1 = 0, κ2 = σ2κ1(τ), κ3 = 0, κ4 = 3σ2κ2(τ),

where κs(τ) denotes the s-th cumulant of τ(1). Hence in this case

Var 〈[z](t)− [zδ] (t)〉 = 3σ4κ21(τ)t
2M−1,

which only depends upon the mean of the subordinator, not its variance.

2.7 Lévy processes and stochastic analysis

2.7.1 Stochastic integrals

This section will assume a basic knowledge of stochastic analysis — that is the calculus of
stochastic integrals based on semimartingales. For those unfamiliar with this background we
have provided a very short primer to this material in Section A.

All Lévy processes are semimartingales. So, in particular, we can consider stochastic integrals
of the form

f(·, A) • z,
where z is a Lévy process, f is a real function on Rx ×R and A is a càglàd stochastic process,
and f satisfies some mild regularity condition ensuring that the process f(·, A) is again càglàd.

2.7.2 Lévy-Ito representation of Lévy processes

Consider first the case of Lévy subordinators. It can be shown that any non-negative Lévy
process z is representable in the Lévy-Ito representation

z(t) =

∫ t

0

∫ ∞

0
xN(dx, ds). (2.29)

Here N(dx, dt) denotes a Poisson field on R+ × R+ with mean measure ν(dx, dt). While
the integral in (2.29) is well defined in wide generality under mild restrictions on the measure
ν(dx, dt), to make z a Lévy process we must require the measure to factorise as

ν(dx, dt) =W (dx)dt,

with W (dx) satisfying ∫ ∞

0
min{1, x}W (dx) <∞,

in order for the stochastic integral in (2.29) to exist. It is clear from the expression (2.29) that
z is a process with non-negative, independent and stationary increments, i.e. a subordinator.

Suppose z(t) is a finite activity process, then it can be written as a compound Poisson process

z(t) =
∑N(t)
j cj , with a mean measure

ν(dx, dt) =W (dx)dt = ψP (dx ‡ c1)dt,

where P (dx ‡ c1) is the probability measure and ψ is the intensity of the Poisson process.
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Figure 2.9: (a) rotates the IG(1,2) density for c1. (b) is the Lévy-Ito form, displaying the
Poisson field N(x, t). File name is levy graphs.ox.

Example 6 Figure 2.9 shows a simulation of the resulting Poisson field

N(x, t) =

∫ x

0

∫ t

0
N(du, ds),

in the case where c1 ∼ IG(δ, γ), taking ψ = 3, δ = 1 and γ = 2. We drew this by first simulating
a homogeneous Poisson process with rate ψ, and then assigning height according to draws from
the IG(δ, γ) distribution.

It is not possible to correctly draw an infinite activity process for we would have to draw an
infinite number of points in the Poisson field, although most of them would be have very little
height.

For a general Lévy process z we have the Lévy-Ito representation

z(t) = at+ bw(t)

+

∫

{|x|<ε}
x{N(dx, t)− tν(dx)}

+
∑

0<s≤t
1{|∆zs|≥ε}∆Z(s), (2.30)

where ε > 0, w is a Brownian motion while, for any set Λ, 0 /∈ Λ̄ (the closure of Λ), NΛ
t =∫

ΛNt(·, dx) is a Poisson process with mean tν(Λ), ν being a Lévy measure on R. Furthermore,
NΛ
t is independent of W and NΛ

t is independent of NΓ
t if Λ and Γ are disjoint.

For a proof see, for instance, Jacod and Shiryaev (1987, Section ??).

2.7.3 Quadratic Variation

Section 2.6 showed us that it is obvious that if X is a Lévy process then its quadratic variation,
[X], is also a Lévy process, in fact a subordinator. An example of this is where z is a compound
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Poisson process

z(t) =

N(t)∑

i=1

yi and then [z](t) =

N(t)∑

i=1

y2i .

In some cases it is helpful to work with an alternative, and equivalent, definition of QV which
is written in terms of a stochastic integral. It is that

[X] = X2 − 2X− •X. (2.31)

This is discussed in some detail in our primer on stochastic analysis. For now we give an example.

Example 7 Let N be a Poisson process and let us check the consistency of the formulae (2.31)
and (2.28). Suppose Nt = n. It is immediate from (2.28) that

[N ](t) = n

while, on the other hand,

N2 − 2

∫ t

0
N(s−)dN(s) = n2 − 2

n∑

i=1

(i− 1) = n2 − 2
(n
2

)
= n.

Example 8 More generally still, for z an arbitrary subordinator we find from formula (2.29)

[z](t) =

∫ t

0

∫ ∞

0
x2N(dx, ds)

We can derive this formally by using the Ito algebra rules (described in (A.28, A.29, A.30)). By
(2.29),

dz(t) =

∫ ∞

0
xN(dx, dt),

so

(dz(t))2 =

∫ ∞

0
xN(dx, dt)

∫ ∞

0
yN(dy, dt)

=

∫ ∞

0

∫ ∞

0
xy(N(dx, dt))2

=

∫ ∞

0
x2N(dx, dt).

2.7.4 Stochastic exponential of a Lévy process

TO BE ADDED

2.8 Multivariate Lévy processes

2.8.1 Overview

An important question is how to generate multivariate Lévy processes, that is processes with
independent and stationary multivariate increments. Here we discuss just two approaches: linear
transformation and time deformation.

Suppose u(t) and v(t) are independent Lévy processes and Θ is some non-diagonal matrix.
Then the linear combinations of the original Lévy processes

z(t) = Θ

{
u(t)
v(t)

}
,
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is a bivariate Lévy process. The elements of z are marginally Lévy processes. This type of
argument generalises to any dimension.

We saw in Section 2.5 that the use of subordinators can be used to generate compelling Lévy
processes. Here we use this idea to put

z(t) =

{
u(τ(t))
v(τ(t))

}
,

where τ is an independent, common subordinator. This means that {u(τ(t)), v(τ(t))} is now
a dependent series. A concrete example of this is where {u(t), v(t)} are independent standard
Brownian motions, then

z(t)|τ(t) ∼ N(0, τ(t)I),

which implies the elements of z(t) are uncorrelated but are dependent. In particular

Cov(z21(t), z
2
2(t)) = Eτ(t).

2.8.2 Example: multivariate generalised hyperbolic Lévy process

Suppose we take v(t) as a d× 1 vector of correlated Brownian motions generated by

v(t) = tΣβ +Σ1/2u(t),

where u is a d× 1 vector of independent, standard Brownian motions. Then we take τ to be an
independent subordinator and define the deformed series

z(t) = µt+ v(τ(t)).

Then z(t) is a multivariate type G Lévy process with

z(t)|τ(t) ∼ N(µt+ τ(t)Σβ, τ(t)Σ).

Suppose we choose to make τ a GIG(ν, δ, γ) Lévy process, then we say that z is a multi-
variate generalised hyperbolic Lévy process, following our earlier work on the univariate process
discussed in Section 2.4.1. In particular the increments of such a process are independent and
stationary while the density of z(1) is known to follow a multivariate GH(ν, α, β, µ, δ,Σ) density

fz(1)(x) =
(γ/δ)ν

(2π)d/2 α2(ν−
d
2 )Kν (δγ)

{αq (x− µ)}(ν−
d
2 )K(ν− d

2 )
{αq (x− µ)} exp

{
β′ (x− µ)

}
,

(2.32)
where

q(x) =
√
δ2 + (x− µ)′Σ−1 (x− µ) and α = β′Σβ.

Here Σ allows us to model the correlation between the processes, while ν, δ, and γ controls the
tails of the density. We have a whole vector β which freely parameterises the skewness of the
returns. In order to enforce identification on this model it is typical to assume that

|Σ| = 1. (2.33)

Of course the multivariateGH density has many interesting special cases such as the multivariate
Student t, normal gamma, normal inverse Gaussian, hyperbolic and Laplace. Of course this
important distribution can be thought of as a scale location mixture with

y = µ+Σβσ2 + σΣ1/2ε, ε ∼ N(0, I) ⊥⊥ σ2 ∼ GIG(ν, δ, γ).
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Figure 2.10: Graph of the densities and log-densities of N(0,I) and NIG(1,0,0,1,I) variables. (a)
Density of N(0,I). (b) Density of NIG variables. (c) Log-density of N(0,I). (d) Log-density of
bivariate NIG variables. Code: levy graphs.ox.

This is important, for it immediately follows that linear combinations of y are also GH, while
if we write y = (x′, z′)′ then z|x is GH. Hence many of the important attractive features
of the multivariate Gaussian distribution carry over to the multivariate generalised hyperbolic
distribution.

A simple example of the above multivariate distributions of z(1) is given in Figure 2.10
which draws the density and log-density for the bivariate standard normal and the corresponding
NIG(1, 0, 0, 1) (chosen so that the marginal variances of the variables is one) variables. Again
the log-densities show that the tails of the NIG variables are much thicker — looking roughly
linear in all tails. This has a very big impact on the chance of observing two observations in the
tails of the distribution.

2.8.3 Quadratic covariation

Definitions

The idea of quadratic variation extends to the multivariate case. We again split time into small
intervals

tr0 = 0 < tr1 < ... < trmr
= t.

Then the quadratic covariation series is defined as

[z](t) =p− lim
r→∞

∑
{z(tri+1)− z(tri )}{z(tri+1)− z(tri )}′, (2.34)

where
sup
i
{tri+1 − tri } → 0 for r →∞.

40



For semimartingales

In the case of multivariate semimartingales we can decompose

z(t) = a(t) +m(t),

a predictable component of locally bounded variation and a local martingale, respectively. Then
for all semimartingales

[z](t) = [m](t) +
∑

0≤u≤t
{a(u)− a(u−)} {a(u)− a(u−)}′ ,

the quadratic covariation of the martingale component plus the outer product of the jumps in
the predictable component. Quadratic covariation is important. One of the reasons for this is
that for all special semimartingales with continuous predictable components

Cov(dz(t)|Ft) = E (d[z](t)|Ft) ,

so long as the moments exist.

2.9 Conclusion

To be added.

2.10 Appendix of derivations and proofs

Dynamics of σ(t): Ito’s formula and stochastic volatility.

Suppose σ2(t) is the càdlàg version of a positive OU process, satisfying the SDE

dσ2(t) = −λσ2(t)dt+ dz(λt)

Then, σ2 is of bounded variation, implying [σ2]c = 0, and by Ito’s formula we obtain for the
square root process

σ(t) =
1

2

∫ t

0

1

σ(s)
dσ2(s) +

∑

0<s≤t

{
σ(s)− σ(s−)−

1

2

1

σ(s−)
∆σ2(s)

}

= −1

2
λ

∫ t

0

σ2(s)

σ(s−)
ds− 1

2
λ

∫ t

0

1

σ(s−)
dz(λs)

+
∑

0<s≤t

[
σ(s)− σ(s−)−

1

2

1

σ(s−)

{
σ2(s)− σ2(s−)

}]

= −1

2
λ

∫ t

0
σ(s)ds− 1

2
λ

∫ t

0

1

σ(s−)
dz(λs)

+
∑

0<s≤t
{σ(s)− σ(s−)}

{
1− 1

2

σ(s) + σ(s−)
σ(s−)

}

or, equivalently,

2σ(t) = −λσ∗(t)− λ
∫ t

0

1

σ(s−)
dz(λs)

+
∑

0<s≤t
{σ(s)− σ(s−)}

{
2− σ(s)

σ(s−)

}
.

41



‘OU criterion’

We shall be particularly concerned with integrals of the form

Xt =

∫ t

0
e−sdZs.

Let us consider this for the special case where Z is a subordinator. Then we may take the integral
as being determined pathwise, as the Stieltjes integral. The process X is clearly nonnegative
and increasing and hence a chronometor. We write

X∞ =

∫ ∞

0
e−sdZs = lim

t↑∞
Xt.

Under a mild condition on Z, X∞ will be finite almost surely, that is it will be a random variable.
To determine the relevant condition we first note that since each Xt is infinitely divisible the

same will hold for X∞ provided it is finite almost surely.
Now, consider the kumulant function of Xt which, by Lévy-Khintchine representation is

K̄{θ ‡Xt} = −
∫ t

0

∫ ∞

0
{1− exp(−e−sθx)}W (dx)ds

Using the substitutions y = e−sx and r = es may rewrite this as

K̄{θ ‡Xt} = −
∫ t

0

∫ ∞

1
{1− exp(−θy)}W (esdy)ds

= −
∫ ∞

1

∫ et

1
{1− exp(−θy)}W (rdy)r−1dr

= −
∫ ∞

1
{1− exp(−θy)}Ut(dy)

where

Ut(dy) =

∫ et

1
W (rdy)r−1dr

is the Lévy measure of Xt. Now suppose for simplicity that the Lévy measure W is absolutely
continuous with a density w. Then, for any t > 0, Ut is also absolutely continuous, with density

ut(y) =

∫ et

1
w(ry)dr = y−1

∫ ety

y
w(x)dx

and for t→∞
ut(y)→ u(y) = y−1W+(y)

For X∞ to be a random variable this limiting function u should be a Lévy density, i.e. it should
satisfy the integrability condition (2.15). Noting first that

W+(y) =

∫ ∞

y
w(x)dx = y

∫ ∞

1
w(yτ)dτ

we find

∫ ∞

0+
min {1, x}u(x)dx =

∫ ∞

1

∫ ∞

0+
min {1, x}w(xτ)dxdτ

=

∫ ∞

1

∫ ∞

0+
min

{
1, τ−1y

}
τ−1w(y)dydτ
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=

∫ ∞

0+

∫ ∞

1
min

{
1, τ−1y

}
τ−1dτw(y)dy

=

∫ ∞

1
τ−2dτ

∫ 1

0+
yw(y)dy +

∫ ∞

1

(∫ y

1
τ−1dτ + y

∫ ∞

y
τ−2dτ

)
w(y)dy

=
1

2

∫ 1

0+
yw(dy) +

∫ ∞

1
log yw(y)dy +

1

2

∫ ∞

1
w(y)dy.

In the latter expression the first and third integrals are finite since W is a Lévy measure. We
are thus led to the condition ∫ ∞

1
log yw(y)dy <∞

for finiteness almost surely of X∞.

2.11 Exercises

2.12 Bibliographic notes

2.12.1 Lévy processes

Lévy processes were introduced by Lévy (1937) who developed the theory of infinite divisibility.
Modern accounts of the probability theory of Lévy processes are given in Bertoin (1996) and
Sato (1999). See also Ito (1969), Rogers and Williams (1994, pp. 73–84) and Bertoin (2001). A
reasonably accessible overview of the theory and uses of Lévy processes is given in Barndorff-
Nielsen, Mikosch, and Resnick (2001). A compact account in the context of finance is given by
Shiryaev (1999, pp. 200-206).

The simulation of Lévy processes has to be carried out with some care. There are extensive
results available. Some of the most useful are the infinite series representation developed by
Rosinski (2001). The special case of gamma process simulation is discussed by Wolpert and
Ickstadt (1999), while some more general discussion is given in Walker and Damien (2000). We
should also note the important recent contribution of Asmussen and Rosinski (2000).

2.12.2 Flexible distributions

Most of modern financial economics is built out of Brownian motion and the corresponding
Itô calculus. In this Chapter we have discussed many familiar alternative distributions like the
Poisson, normal gamma, student t and Laplace. The latter two are particularly noteworthy
as they have been used as empirical models for log-prices. In early work Praetz (1972) and
Blattberg and Gonedes (1974) suggested modelling the increments to log-prices using a student
t distribution. This model was not set in continuous time, but we have seen above that it
is possible to construct a Lévy process to justify this type of modelling. Further the model
can be extended to allow for asymmetry. This is a special case of the generalised hyperbolic
distribution, but the fact that it provides a non-symmetric student t distribution has not been
discussed explicitly before. More recently Granger and Ding (1995) have advocated the use
of Laplace distributions to model discrete time returns, while the non-linear Brownian motion
based Cox, Ingersoll, and Ross (1985) processes have gamma marginals and so normal gamma
distributions are often implicitly used in econometrics. It turns out that fitted values of the
normal gamma distribution are typically thinner tailed than the corresponding student or the
Laplace.

In this Chapter we have placed a great deal of emphasis on generalised hyperbolic and
generalised inverse Gaussian distributions. We have carried this out for they support Lévy
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processes, are empirically flexible, encompass many of the familiar models econometricians are
accustomed to and are mathematically tractable. However, their generality and some of the
special cases are not so familiar.

The hyperbolic distribution and its extension to the generalised hyperbolic distribution was
introduced in Barndorff-Nielsen (1977) in order to describe the size distribution of sand grains
in samples of windblown sands. This was motivated by empirical observations due to Brigadier
R. A. Bagnold, F.R.S. who noted that in double logarithmic plotting (that is both the hori-
zontal and vertical axes are plotted on the logarithmic scale) the histograms looked strikingly
as following hyperbolae, the slopes of the asymptotes being related to the physical conditions
under which the sand was deposited; see Bagnold (1941) (note the similarity to the Granger
and Ding (1995) empirics). Subsequently, it was discovered that the hyperbolic shape, or shapes
very close to that, occur in a very wide range of empirical studies, for instance in other areas
of geology, in turbulence, in paleomagnetism, in relativity theory and in biology. For surveys
of developments up till the mid-1980ies, see Barndorff-Nielsen, Blæsild, Jensen, and Sørensen
(1985). The generalised inverse Gaussian distribution is due to Étienne Halphen in 1946, while
it was briefly discussed by Good (1953). A detailed discussion of this distribution was given by
Jørgensen (1982).

Following a suggestion by Barndorff-Nielsen, Ernst Eberlein and coworkers began an investi-
gation of the applicability of the hyperbolic laws in finance and this has developed into a major
project, see Eberlein and Keller (1995) on their initial work. We will discuss their application
of the associated Lévy processes in a moment. Bauer (2000) discusses the use of these models
in the context of value at risk.

When deviations from the hyperbolic shape occurred they typically showed somewhat heavier
tails than the hyperbolic. This led Barndorff-Nielsen to consider more closely another of the
generalised hyperbolic laws, the normal inverse Gaussian, which had until then received scarce
attention (although work by Sichel (1973) on the distribution of the size of diamonds is an
important exception), but turned out not only to fit a much wider range of data but also to
possess various nice mathematical properties not shared by the hyperbolic (Barndorff-Nielsen
(1997), Barndorff-Nielsen (1998b), Barndorff-Nielsen (1998a)).

The class of tempered stable distributions was introduced by Tweedie (1984). Hougaard
(1986) discussed their applicability in survival analysis. See also Jørgensen (1987) and Brix
(1999). The normal variance-mean mixtures with TS mixing was introduced by Barndorff-
Nielsen and Shephard (2002a), who also extended this concept to the normal modified stable
distribution.

2.12.3 Lévy processes in finance

The use of normal gamma based Lévy processes in finance was pioneered by Madan and Seneta
(1990) and Madan, Carr, and Chang (1998) who paid particular attention to their use in option
pricing. Recent extensions of this work include Carr, Geman, Madan, and Yor (2002).

The thicker tailed hyperbolic distribution and Lévy process was studied extensively in the
context of finance by Eberlein and Keller (1995), who also discussed the corresponding option
pricing theory and practice in Eberlein, Keller, and Prause (1998) and Eberlein (2000). This
work is possible because the generalised inverse Gaussian distribution were shown to be infinitely
divisible by Barndorff-Nielsen and Halgreen (1977). The even thicker tailed normal inverse
Gaussian process is studied by Barndorff-Nielsen (1997), while Rydberg (1997b) and Rydberg
(1997a) discusses both fitting the process to financial data and simulating from it. Prause
(1998) and Raible (1998) have recently written first rate Ph.D. theses on generalised hyperbolic
Lévy processes under the supervision of Ernst Eberlein. Both of these theses have a wealth of
information on this topic. Bingham and Kiesel (2000) looks at the use of hyperbolic processes

44



in finance, while Bibby and Sørensen (2001) reviews the area of generalised hyperbolic processes
in finance.

The idea of time deformation or subordination is due to Bochner (1949) and Bochner (1955),
while it was introduced into economics by Clark (1973) who suggested the use of volume statistics
as a subordinator, placing particular weight on studying the implications of using a lognormal
subordinator. At that stage we did not know that this was a valid mathematical construction
for it was not until Thorin (1977) that the lognormal was shown to be infinitely divisible. See
also Bondesson (2000) for up to date treatment of lognormal Lévy processes. Epps and Epps
(1976) and Tauchen and Pitts (1983) further studied the relationship between volume and the
variance of the increments to prices. Recent discussions of this includes Ané and Geman (2000).
Stock (1988) used the concept of subordination in a wider economic context outside finance.

Mandelbrot (1963) and Mandelbrot and Taylor (1967) introduced the concepts of self-
similarity and stable Lévy processes into financial economics. Almost immediately the main
stream academic profession rejected these models, after some initial support from Fama (1965),
due to their lack of empirical fit as most research papers suggested the existence of at least
two moments for returns. An elegant discussion of the move away from these models and its
importance is given in Campbell, Lo, and MacKinlay (1997, pp. 17-19). However, there still
remains a small group of researchers who push in this area. Recent work is discussed by Rachev
and Mittnik (2000).

Truncated Lévy flights were introduced by Mantegna and Stanley (1994), while it has been
pioneered in finance in Mantegna and Stanley (1996) and Mantegna and Stanley (2000). The
extended Koponen class has been considered by Novikov (1994), Koponen (1995), Mantegna and
Stanley (2000), Boyarchenko and Levendorskii (1999), Boyarchenko and Levendorskii (2000a),
Boyarchenko and Levendorskii (2000b), Boyarchenko and Levendorskii (2000c), Boyarchenko
and Levendorskii (2000d), Carr, Geman, Madan, and Yor (2002), and Rosinski (2001). Carr,
Geman, Madan, and Yor (2002) called these models CGMY processes after their own initials.
We have not followed that nomenclature. Meixner distributions were introduced by Schoutens
and Teugels (1998) and have been studied in the context of Lévy based models for finance by
Schoutens and Teugels (2001) and Grigelionis (1999). In Geman, Madan, and Yor (2000) what
are here called normal tempered stable (NTS) NTS Lévy processes have been studied, in the
case of zero drift, from a viewpoint different from the one of the present book. Ben-Hamou
(2000) has studied estimating the parameters of the Lévy process from option prices.

Recently Andersen, Bollerslev, Diebold, and Labys (2001a) have discussed the application
of the theory of quadratic variation in the context of arbitrage-free financial markets, while
Barndorff-Nielsen and Shephard (2001a) emphasised its role in the context of chronometers and
stochastic volatility. Both of these papers will be discussed extensively in later chapters of this
book, where a detailed treatment of realised variance will be given.

2.12.4 Empirical fit of Lévy processes

There is a large literature on studying the fit of various parametric models to the marginal
distribution of returns of speculative assets. Most of these papers are not based on a background
of a Lévy process and so risked fitting an incoherent (from a continuous time viewpoint) model.
An example of this is Praetz (1972) in his work on the student t distribution. A notable exception
is Mandelbrot (1963) where he used stable distributions and related this to stable processes.

The likelihood methods we used to fit the models are entirely standard. We have used
profile likelihoods to compute measures of uncertainty as these are known to be more reliable
than using the first order Gaussian asymptotic distribution. A discussion of this literature is
given in Barndorff-Nielsen and Cox (1994, Section 3.4). The use of profile likelihoods for ν in the
generalised hyperbolic is new as was the use of the EM algorithm in this context. Independent
and concurrent work on the use of the EM algorithm for this problem was carried out by
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Protassov (2001). An elegant discussion of the EM algorithm is given in Tanner (1996). The
theory of robust standard errors for maximum likelihood estimation is standard in econometrics
and statistics. Leading references are White (1982) and White (1994).

Barndorff-Nielsen and Prause (2001) showed that the Olsen scaling law is explained by the
NIG Lévy process.
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Chapter 3

Simulation and inference for Lévy
processes
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Abstract: This Chapter provides an introduction to the simulation of Lévy processes, as
well as inference methods for estimating and testing particular parameteric Lévy processes.
Univariate and multivariate models are discussed. A detailed bibliographical review is given
at the end of the Chapter. It will not come as a surprise to our readers that Lévy processes
allow a flexible model for the marginal distribution of returns, but will be rejected as financial
returns have important serial dependence structures. This will prompt the development of more
general time deformation models, introduced in the next Chapter. Special cases of these will be
stochastic volatility models built from Lévy processes.

3.1 What is this Chapter about?

In this Chapter we provide a first course on simulating, estimating and testing Lévy processes in
the context of financial economics. The Chapter will refer to some common datasets discussed
in detail in Chapter 1 and will delay the discussion of literature on this topic until the end of
this Chapter. Throughout we hope our treatment will be as self-contained as possible.

This Chapter has 4 other sections, whose goals are to:

• Describe various methods for simulating from Lévy processes.

• Estimate various Lévy processes from financial data.

• Draw conclusions to the Chapter.

• Discuss the literature associated with Lévy processes.

3.2 Simulating Lévy processes

3.2.1 Simulation

Many aspects of financial economics and statistics require us to be able to simulate from pro-
cesses in order, for example, to make inference about parameters indexing the model or to price
derivatives written on the underlying assets. Here we discuss the simulation of subordinators,
which in turn would allow us to simulate processes on the real line by time deforming a simulated
Brownian motion.

Suppose we know how to simulate from the marginal distribution of z(t) for any t, then the
process z can be exactly simulated at a fixed mesh of points in time 0 = t0 < t1 < t2 < ... < tn.
In particular we build up the process by iterating

z(tj) = z(tj−1) + uj , where uj
L
= z(tj − tj−1), j = 1, 2, ..., n, (3.1)

where the {uj} are independent and z(0) = 0. This was the method we used to simulated
Poisson, IG, Γ and compound Lévy processes for Figures 2.1 and 2.2. In those pictures we used
tj − tj−1 = 1/2000.

At a more abstract level we can approximately simulate from the entire process, rather than
at a mesh of points, using the construction

z∆(t) =

bt/∆c∑

j=1

uj , uj
L
= z(∆), ∆ > 0. (3.2)

Now as ∆→ 0 the process z∆ converges to z.
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3.2.2 Simulating the paths by rejection in the tempered stable case

Method Many Lévy processes do not have easily computed densities for z(t), which makes it
hard to directly simulate from uj . An important example of this is the TS process, where the
probability density is not available but where the Lévy density has the simple form

w(x) = Ax−κ−1 exp (−Bx) , x, A,B > 0 and κ ∈ (0, 1).

Recently Rosinski has based an asymptotic representation of the path of a TS Lévy process on
its Lévy density.

The Rosinski rejection method approximates the path by

zI(t) =
I∑

i=1

min

{(
As

biκ

)1/κ

, B−1eiv
1/κ
i

}
I(ui ≤ t), for 0 ≤ t ≤ s, (3.3)

where I(·) is an indicator function, {ei}, {vi}, {bi}, {ui} are independent of one another and over

i except for the {bi} process. Here ui
i.i.d.∼ U(0, s), vi

i.i.d.∼ U(0, 1), the {ei} are exponential with
mean 1. Further the b1 < ... < bi < ... are the arrival times of a Poisson process with intensity
1. Then as I →∞ the process zI(t) converges uniformly to a sample path of a tempered stable
Lévy process. Hence this is a more sophisticated version of the type of result given in (3.2). If
we had a more limited goal of simulating the process at a single point z(∆), then the summation
simplifies to

zI(∆) =
I∑

i=1

min

{(
A∆

biκ

)1/κ

, B−1eiv
1/κ
i

}
.

The important features of this method is that

• (4.21) simulates the whole path directly. The random variables {ei}, {vi}, {bi}, {ui} are
drawn once and we just plot out (4.21) at whatever resolution is required.

• As I →∞, zI converges from below to z. Further
(
As
biκ

)1/κ
monotonically declines with i.

• The underlying random numbers {ei}, {vi}, {bi}, {ui} are parameter free. Suppose we fix
these random numbers and computed the zI function for a variety of values of parameters
A, B and κ. The resulting sample paths would change continuously (but not differentiably)
with the parameters.

• The rate of convergence of the sum increases as κ→ 0 for it can be shown that

min

{(
A∆

biκ

)1/κ

, B−1eiv
1/κ
i

}
= Op(i

−1/κ).

Illustration: IG(δ, γ) process Figure 3.1 shows the results from simulating an IG(δ =
0.2, γ = 10) Lévy process over the interval [0, 10] using the Rosinski approach. This fits in the

TS framework by taking κ = 0.5, A = (2π)−1/2 δ and B = γ2/2. An important aspect of the
Rosinski approach is the choice of I. As I increases we converge to the truth, from below. We
can see that the effect of the truncation of the infinite series is small when I > 1, 000 and tiny
for I > 10, 000.
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Simulation of IG process for variety of choices of M
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Figure 3.1: Simulating IG process using Rosinski’s method for TS processes. Shows the sim-
ulation varying M . SAs M increases the curves move upwards. The lines for M = 10, 000
and M = 50, 000 are on top of one another. The line for M = 1, 000 is slightly below. Code:
rosin rej.ox.

3.2.3 Simulating the paths via the inverse tail integral

The theory

The above rejection based method is rather easy to use, but it only covers the TS case. More
generally we can work with a related series representation based on the positive Lévy density
w(x), x ∈ R+, for z(1). Then define the tail mass function

W+(x) =

∫ ∞

x
w(y)dy,

which is a strictly decreasing function for all x ∈ R+. Denote the unique inverse function of W+

by W←, i.e.
W←(x) = inf

{
y > 0 :W+(y) ≤ x

}
.

Then the desired result, called the series representation, is that

zI(t) =
I∑

i=1

W←(bi/T )I(ui ≤ t), for 0 ≤ t ≤ T, (3.4)

where ui
i.i.d.∼ U(0, T ), is independent of b1 < ... < bi < ... which are the arrival times of a

Poisson process with intensity 1. The result is that the process zI(t) converges uniformly to
z(t) as I → ∞. This method also allows us to simulate the increment of the Lévy process. In
particular

zI(∆) =
I∑

i=1

W←(bi/∆).

Clearly the computational speed of these techniques will depend upon the characteristics of the
W← function — is it expensive to compute W← and does W←(x) quickly as x increases.
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Examples

Compound Poisson process It helps to think about the compound Poisson process example.
Let it have intensity ψ and probability density f(x) for the positive jumps, then the Lévy density
and tail mass function are w(x) = ψf(x) and W+(x) = ψ {1− F (x)}, implying

W←(x) =

{
F−1

{
1−

(
x
ψ

)}
, x < ψ

0, x ≥ ψ.

Hence the inverse only involves computing the quantiles of the jumps. Overall this implies

zI(t) =
I∑

bi<Tψ

F−1
{
1−

(
bi
ψT

)}
I(ui ≤ t).

Clearly if bI > Tψ, then there is no approximation by using this series representation. This
method has a simple interpretation. If we sample from

F−1
{
1−

(
bi
ψT

)}
until bi > Tψ,

then an ordered sequence from f(x) of size Po(ψT ) is produced. The effect of the I(ui ≤ t)
term is to sample randomly from this ordered sequence a random share of the draws. So the
infinite series representation samples compound Poisson processes rather effectively.

A simple important example of this is where w(x) = να exp(−αx) so that W+(x) = νe−αx,
which has the convenient property that it can be analytically inverted:

W←(x) = max

{
0,− 1

α
log

(
x

ν

)}
.

Hence as soon as x > ν then W←(x) = 0, implying

zI(t)
L
= − 1

α

I∑

bi<tv

log

(
bi
tν

)
.

This means that there is a non-zero probability that z(t) is exactly zero.

Gamma process For z(1) ∼ Γ(ν, α), the Lévy density is

w(x) = vx−1 exp(−αx), x ∈ R+, (3.5)

which goes to infinity at zero. It follows that

W+(x) = ν

∫ ∞

x
s−1 exp(−αs)ds = νE1(x/α), (3.6)

where E1(x) is the exponential integral
∫∞
x y−1e−ydy which can be computed accurately and

rapidly using polynomial and rational functions (cf. Abramowitz and Stegun (1970, p. 231) and
the FN library of netlib). This has to be numerically inverted in order to simulate using (3.4).
For small x,

E1(x) ' − log x− 0.57721 + o(x1/2),

implying for large values of x

E−11 (x) ' exp (−x− 0.57721) .
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The implication is that the infinite summation in (3.4) should converge exponentially quickly
and so allows easy truncation. A convenient way of approximating E−11 (x) is to note that

E1(x) = lim
α→0

∫ ∞

x
ya−1e−ydy

= lim
α→0

Γ(a) Pr(Xα > x), where Xα ∼ Γ(a),

= lim
α→0

1

a
Pr(Xα > x),

Hence E−11 (x) can be found via E−11 (x) = limα→0Qα(1−ax), where Qα(p) denotes the quantile
of the Γ(a) variable at probability level p.

3.2.4 Simulation via the characteristic function

Add some stuff from Hubalek.

3.3 Empirical estimation and testing of Lévy processes

3.3.1 A likelihood approach

Estimation of GH Lévy processes

Here we will assess how well Lévy processes fit the marginal distribution of financial returns.
Their flexibility allows important improvements over conventional Brownian motion models,
however they clearly neglect the dynamics of returns. These results will guide us in building
empirically reasonable dynamic models in later chapters of this book.

We assume that we observe the log-price of an asset, written at time t as y∗(t), at equally
space intervals of time. Let the interval be ∆, then we write returns as

yn = y∗ (∆n)− y∗ ((n− 1)∆) .

Further, if we choose to define the continuous time clock in such a way that ∆ = 1, then {yn}
has the same distribution as y∗(1).

We will estimate GH Lévy processes using likelihood based methods. The assumption of
the Lévy process means that the {yn} are assumed to be i.i.d. GH, leading to the likelihood
function

log f(y1, ..., yT ; θ) =
T∑

n=1

log f(yn; θ),

where θ denotes the unknown parameters which index the density of y∗(1), which is given in
equation (2.23). Hence

θ = (ν, µ, β, δ, γ)′ .

The key parameter in this model is ν. The maximum likelihood (ML) estimator of θ is given by

θ̂ =arg
θ

max log f(y1, ..., yT ; θ),

which has to be determined by numerical optimisation. This Section will carry this through by
using the Broyden, Fletcher, Goldfard and Shanno (BFGS) quasi-Newton algorithm made avail-
able in the matrix programming language Ox by Jurgen A. Doornik. The GH implementation
of it is given in bfgs gh.ox. This algorithm completes its optimisation in around 10 seconds for
sample sizes of around 3, 000 on a moderately powerful PC in 2001.

One approach to constructing confidence intervals for the parameters is via the asymptotic
distribution of the ML estimator. This is based on the Lévy assumption of i.i.d. increments.
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We know the independence assumption is unrealistic. In a later subsection we will discuss its
impact on confidence intervals. For now we stand by the Lévy assumption.

The asymptotic theory for ML estimators means that

√
T
(
θ̂ − θ

) L→ N(0, I−1), as T →∞, (3.7)

where I is the expected information per observation which, under correct specification of the
model, is

I = −E
(
∂2 log f(yn; θ)

∂θ∂θ′

)
= Cov

(
∂ log f(yn; θ)

∂θ

)
. (3.8)

The expected information is usually replaced by an averaged observed quantity

IS = − 1

T

T∑

n=1

(
∂2 log f(yn; θ)

∂θ∂θ′

)
or (3.9)

IO =
1

T

T∑

n=1

(
∂ log f(yn; θ)

∂θ

)(
∂ log f(yn; θ)

∂θ

)′
. (3.10)

Again the score ∂ log f(yn; θ)/∂θ and observed information −∂2 log f(yn; θ)/∂θ∂θ′ are found by
numerical differentiation.

The above results allow us to construct asymptotically valid t statistics for elements of θ̂−θ.
In particular a 95 percent confidence interval for ν can be found as

ν̂ ± 1.96

√
1

T
(I−1)νν , (3.11)

where
(
I−1

)
νν denotes the diagonal element of I−1 corresponding to ν. Of course such an

interval is only asymptotically valid.

Confidence intervals via likelihood ratio statistics

An alternative way of quantifying uncertainty is based on the likelihood ratio statistic. Again
suppose our focus is on ν. Define ω = (µ, β, δ, γ)′, so that θ = (ν, ω′)′, and

ω̂ν =arg
ω

max log f(y1, ..., yT ; ν, ω).

ω̂ν is a constrained ML estimator of ω, imposing on θ an a priori fixed value of ν. Likelihood
theory tells us that if we constrain ν correctly then the likelihood ratio statistic

2
{
log f(y1, ..., yT ; θ̂)− log f(y1, ..., yT ; ν, ω̂ν)

} L→ χ21, as T →∞.

This implies we can find a 95 percent confidence interval for ν by plotting the profile likelihood

log f(y1, ..., yT ; ν, ω̂ν)− log f(y1, ..., yT ; θ̂) against ν

and including all values of ν for which this statistic is greater than −0.5 × 3.84. Although
this interval is only asymptotic valid, higher order likelihood theory strongly suggests that this
likelihood ratio based interval has better finite sample coverage than the corresponding t-statistic
one given in (3.11).

In order to illustrate the above methods we will look in detail at the case of daily exchange
rate movements in the Canadian Dollar rate against the US Dollar. The results are given in Table
3.1. The ML estimate of ν is quite negative, while µ and β are close to one. The asymptotic
standard errors for β and ν are quite large and suggest both µ and β are not significantly
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MLE of GH parameters Likelihoods
µ β γ δ ν GH β = 0 N(µ, σ2)

ML estimates -0.0133 0.179 0.419 1.95 -1.62 -626.74 -627.97 -819.32
Outer product (.00887) (.113) (.0530) (.438) (.710)
Second derivative (.00897) (.115) (.0491) (.399) (.651)

Table 3.1: ML estimates of GH for the Canadian daily exchange rate. Brackets are the asymp-
totic standard errors computed using different estimates of the expected information — outer
product measure and inverse of the negative of the second derivative matrix. GH column de-
notes the likelihood for the unrestricted model. β = 0 imposes symmetry.

different from zero. Interesting the standard errors based on the outer product measure (3.10)
and the second derivative matrix (3.9) are very similar indeed.

The Table also gives the likelihood when β is constrained to be zero. The likelihood drops by
around one, which again suggests β can be set to zero. Finally the Table shows the GH model
improves upon the Gaussian likelihood fit by around 193, which is a very large improvement.
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Figure 3.2: Profile likelihood for ν in the Canadian Dollar example. Three models are considered:
GH and the special cases of the student t ( ν < 0) and the normal gamma ( ν > 0). Code:
fit gh.ox.

Figure 3.2 draws the profile likelihood function for ν for the Canadian Dollar example. This
gives a similar result to the t statistics given in Table 3.1 with ranges of approximately −2.5
to −0.2 supported by the data under the assumption of the GH Lévy model. The Figure also
shows the profile likelihoods for the normal gamma and Student t special cases of the GH model.
Recall in the normal gamma model δ is set to zero, while in the student t case γ = 0. Of course
the likelihoods for these models cannot exceed that of the GH model, but this plot shows how
far these models fall behind the GH model. We can see that for very negative ν the likelihood
for the GH model is the same as that for the Student t model for the ML of γ turns out to be
zero. The same effect can be seen for large values of ν for then the ML of δ is zero. The Figure

54



shows that the Student t model performs quite well, but the normal gamma process has some
very significant difficulties.

Later we will repeat the empirical analysis of many other financial time series using the GH
model. For now we go on a slight detour which focuses on some numerical issues.

3.3.2 Model misspecification: robust standard errors

Lévy models have i.i.d. increments. Although this allows a flexible framework for modelling the
distribution of these increments, we know that financial returns exhibit volatility clustering. In
later Chapters of this book we will develop parametric models which will deal with this feature,
but for now our Lévy models are misspecified.

Even though our models are incorrect, estimation by ML methods makes sense. We will
now be using the GH model to model the marginal distribution of the increments and the ML
method given above will deliver consistent and asymptotically normally distributed estimators
of the parameters. In particular the theory of estimating equations implies

√
T
(
θ̂ − θ

) L→ N
[
0, I−1J I−1

]
, as T →∞. (3.12)

where

J = lim
T→∞

1

T
Cov

(
∂ log f(y; θ)

∂θ

)
, and I = −E

(
∂2 log f(yn; θ)

∂θ∂θ′

)

Under an i.i.d. assumption we know this simplifies to (3.7) due to the information equality (3.8)
that I = J , but this is not true if the data is serially dependent.
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Figure 3.3: Autocorrelation functions for the Canadian data drawn against lag length. Top left
is of |yn|, other graphs are for the five elements of ∂ log f(yn; θ)/∂θ. Code: em gh.ox.

In order to make (3.12) practical we need to be able to estimate the element of the sandwich
I−1J I−1 in order to construct robust standard errors for the ML estimator. Now the empirical
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average

IS = − 1

T

T∑

n=1

(
∂2 log f(yn; θ)

∂θ∂θ′

)
,

will consistently estimate I so long as the process is ergodic. However, unless the returns are
independent the outer product measure (3.10) IO will not correctly estimate J for the individual
scores per observations

∂ log f(y; θ)

∂θ
=

T∑

n=1

sn, where sn =
∂ log f(yn; θ)

∂θ
,

will be dependent through time. To illustrate this we have drawn in Figure 3.3 the autocorrela-
tions corresponding to the Canadian Dollar case (evaluated at θ̂). The Figure shows the scores
for ν, δ and γ have acfs which are close to that of |yn|. The scores for µ and β are much less
dependent.

The task of estimating J is familiar in statistics, for J is just the zero frequency of the
spectral matrix of the vector sn process

J = Cov (sn) +
∞∑

s=1

{Cov (sn, sn−s) + Cov(sn−s, sn)} .

There is a vast literature on this topic both in statistic and econometrics. Here we use the

MLE of GH parameters
µ β δ γ ν

ML estimates -0.0133 0.179 0.419 1.95 -1.62
Correct model (.00887) (.113) (.0530) (.438) (.710)
Robust: m=250 (.0134) (.143) (.0718) (.394) (.741)
Robust: m=500 (.0164) (.172) (.0768) (.399) (.769)

Table 3.2: Robust s.e.. ML estimates of GH for the Canadian Dollar. Bracketed are the standard
outer product information based s.e. together with the robust asymptotic s.e. computed using
different values of m. Code: fit gh.ox.

Newey-West estimator

JO =
1

T

T∑

n=s+1

sns
′
n +

m∑

s=1

K(j;m)





1

T

T∑

n=s+1

sns
′
n−s +

1

T

T∑

n=s+1

sn−ss
′
n



 ,

where K(j;m) denotes a non-negative Bartlett smoothing window

K(j;m) =





1−
∣∣∣ j
m+1

∣∣∣ ,
∣∣∣ j
m+1

∣∣∣ ≤ 1,

0,
∣∣∣ j
m+1

∣∣∣ > 1,

while m is called the lag truncation parameter. It can be shown that this is enough to guarantee
that JO is positive semi-definite.

Table 3.2 reports the results from using the above methods to compute the robust standard
errors for the Canadian Dollar dataset. The Table reports results for m = 250 and 500, although
we can see that the standard errors do not vary much with m. Most of the errors have inflated
as a result of taking into account the effect of serial dependence in the data, although this is not
universally so. Again the normal gamma process looks like a poor fit to this data.
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3.3.3 Empirical results

Six daily exchange rate movements

Table 3.3 gives the estimates of the parameters, together with their standard and robust standard
errors, for our daily exchange rate return data sets. The corresponding fitted log-density for all
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Figure 3.4: Log of the estimates of the unconditional density of the returns for six exchange
rates. Also plotted is the log-density for fitted GH model.

six series is given in Figure 3.4. This shows pine tree tails in the marginal distributions for all
the fitted distributions except for Sterling, which has approximately linear tails. Throughout
the fit of the model is very close to the drawn non-parametric estimate of the log-density1.

There are a number of common features across these results. First all the non-Gaussian
models provide dramatic improvements over the fit of the normal likelihood. The ν parameters
seems to take values between −2 and 0.5, while neither δ nor γ are close to zero. To reinforce
this Figure 3.5 shows the profile likelihood function for each of the datasets. Also drawn are the
corresponding profile likelihoods for the skewed Student and normal gamma models (as these
are special cases of the GH model, naturally these functions are either equal to or below the
GH curve). The results indicates that the normal gamma model is not really supported by the
data. The skewed Student model is typically more supported — primarily as it has fatter tails.
Typically ν is around −2, which corresponds to 4 degrees of freedom for the Student distribution.
The fit of the distribution is very sensitive to this value. The skewed Student is dominated by
GH models with γ > 0. The likelihood function is typically flat for GH models with ν between

1The non-parametric estimator of the log-density is constructed by using the log of Gaussian kernel estimator
coded in Applied Statistics Algorithm AS 176 by Bernard Silverman, which is available at StatLib and NAG in
many statistical software environments such as Ox. The bandwidth is chosen to be 1.06σ̂T−1/5, where T is the
sample size and σ̂ is the empirical standard deviation of the returns (this is an optimal choice against a mean
square error loss for Gaussian data).
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Figure 3.5: Daily exchange rate data. Profile likelihood (truncated at -25) for the ν parameter of
the GH. Also profile likelihood for the skewed Student (ν < 0) and the normal gamma (ν > 0).

−2 and 2. Overall, however, the values between −2.0 and 0 seem best supported. Finally, the
special cases of imposing β = 0 seems not to harm the fit a great deal for exchange rate data,
although there is slight statistical significance in the negative skewness in the UK Sterling, Swiss
Franc and Japanese Yen series.

Rate MLE of GH parameters Likelihoods
µ β δ γ ν GH β = 0 δ = 0 γ = 0 N

Canada -0.013 0.179 0.419 1.95 -1.62 -626.74 -627.97 -638.19 -627.61 -819.32
(.0164) (.172) (.076) (.399) (.769)

DM 0.0243 -0.0647 0.873 1.40 -0.979 -3,903.1 -3,903.8 -3,909.8 -3,905.0 -4,052.2
(.0330) (.0631) (.129) (.265) (1.10)

FF 0.0308 -0.0744 0.930 0.923 -1.55 -3,797.1 -3,798.1 -3,809.3 -3,798.1 -3,988.2
(.0293) (.0609) (.083) (.208) (.614)

SF 0.0731 -0.143 1.08 1.25 -1.27 -4,296.9 -4,300.6 -4,302.1 -4,298.3 -4,428.2
(.0378) (.0658) (.094) (.214) (.834)

JY 0.0447 -0.120 0.800 0.841 -1.12 -4,022.6 -4,027.1 -4,042.8 -4,025.5 -4,310.3
(.0267) (.0419) (.069) (.144) (.372)

Pound 0.0341 -0.0895 0.430 1.89 0.145 -3485.7 -3487.5 -3492.5 -3495.1 -3704.8
(.0187) (.0390) (.090) (.097) (.439)

Table 3.3: Fit of GH for daily exchange rates. GH denotes unrestricted model. β = 0 imposes
symmetry, δ = 0 normal gamma model, γ = 0 skewed student. S.E.s (m = 500) are in brackets.

Daily equity indexes

Table 3.4 gives the estimates of our parameters for the daily equity return data. The corre-
sponding profile likelihoods are given in Figure 3.6.

These estimated distributions are more mixed, with values of ν between −1 and 1 being
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Index MLE of GH parameters Likelihoods
µ β δ γ ν GH β = 0 δ = 0 γ = 0 N

DAX 30 0.234 -0.113 0.983 0.821 -0.206 -2,735.5 -2,740.6 -2,739.1 -2,740.3 -2,849.4
(.0915) (.0377) (.126) (.133) (.836)

FTSE 100 0.0439 -0.00477 0.734 1.99 1.72 -2,488.7 -2,488.7 -2,488.8 -2,490.4 -2,515.4
(.0411) (.0375) (.328) (.190) (1.95)

S&P 500 0.124 -0.0593 1.05 0.655 -1.03 -2,314.6 -2,315.6 -2,322.3 -2,315.8 -2,444.9
(.0270) (.0195) (.191) (.236) (.872)

Nikkei 500 0.00954 -0.00737 1.08 0.780 -0.654 -2,531.0 -2,531.0 -2,536.1 -2,532.4 -2,638.1
(.0384) (.0290) (.293) (.322) (1.75)

Table 3.4: Fit of GH for daily equities. GH denotes unrestricted model. β = 0 imposes symmetry,
δ = 0 normal gamma model, γ = 0 skewed student. S.E.s (m = 500) are in brackets.

roughly necessary. Overall again the normal inverse Gaussian usually does pretty well, never
fitting really poorly. One conclusion from these fitted models is that there seems very little
asymmetry in this data. This is perhaps surprising as this is always an important possibility for
equity data. The improvement over the Gaussian fit is picked up very well in the discrepancy
between the Gaussian and the GH likelihood fits. This holds across all the assets, but is less
severe for FTSE — which is not surprising given its normal gamma like behaviour.

−4 −2 0 2 4

−20

−15

−10

−5

0 DAX 30

Generalised hyperbolic 
Student or normal gamma 

−4 −2 0 2 4

−20

−10

0 FTSE 100

Generalised hyperbolic 
Student or normal gamma 

−4 −2 0 2 4

−20

−15

−10

−5

0 S&P 500 Composite

Generalised hyperbolic 
Student or normal gamma 

−4 −2 0 2 4

−20

−10

0 Nikkei 500

Generalised hyperbolic 
Student or normal gamma 

Figure 3.6: Daily index return data. Profile likelihood for the ν in GH model. Also profile for
the skewed Student (ν < 0) and the normal gamma (ν > 0).

The corresponding fitted log-densities are given in Figure ?? in the first chapter. This showed
pine tree tails in the marginal distributions for all the fitted distributions except for Sterling,
which has approximately linear tails. Of course this was reflected in the fitted models.

Olsen group’s 5 minute data

In Table 3.5 we have reported the results from repeating this experiment but when we have used
the 5 minute Olsen exchange rate return data discussed in Chapter 1. Recall there we split the
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series into 4 pieces. We follow that here, to try to gain an understanding of the stability of the
estimated parameters through time. The results suggest that ν is between −1 and −0.5, which
again supports the normal inverse Gaussian distribution. The other parameters in the model
are quite stable, although δ falls towards the end of the sample.

MLE of GH parameters Likelihoods
µ β δ γ ν GH β = 0 δ = 0 γ = 0 N

A .00034 -.203 .0215 15.2 -.485 352,521 352,519 352,137 352,086 317,800
(.00009) (.0968) (.00396) (.149) (.0778)

B .00038 -.251 .0272 13.7 -.507 322,657 322,652 322,241 322,305 293,460
(.0001) (.0907) (.00526) (.198) (.102)

C .00020 -.103 .0297 11.4 -.643 319,248 319,247 318,581 318,933 288,941
(.00009) (.0781) (.00333) (.154) (.0676)

D .00031 -.211 .0295 8.03 -.946 347,149 347,145 346,045 347,011 311,439
(.00008) (.0838) (.00254) (.176) (.0559)

Table 3.5: ML estimates of GH for the 5 minute exchange rate. β = 0 imposes symmetry, δ = 0
implies the normal gamma model, γ = 0 is the skewed student t. Figure in brackets are robust
s.e.s computed with m = 500.

The Table suggests that for this exchange rate there is very little non-symmetry in the dis-
tribution. Throughout the fit of the normal gamma and Student distributions special cases are
significantly worse than the general GH model or indeed the normal inverse Gaussian distribu-
tion.

The Olsen dataset allows us to study the empirical effect of time aggregation upon the fit
of the these models. This is most conveniently carried out for NIG processes for they are
empirically plausible and we know that whatever the value of ∆

yn ∼ NIG(α, β, µ∆, δ∆).

We found that by setting γ = 2.1 we could produce fits which are broadly consistent with
the NIG distribution when the increments were measured over at least 6 hours, with the ML
procedure consistently selecting δ (with ∆ chosen to represent daily data) to be around 0.96.
Throughout β is small, which means α ' γ, while µ is tiny. For finer increments we found that
the model was unable to fit the data without changing the NIG’s parameters, reflecting the
porosity of the independence assumption in the Lévy increments. Figure 3.7 shows the effect
of time aggregation on the corresponding shape triangle (2.18) for this data. The points on
the triangle are computed based on moving from 6 hour returns up to 36 day returns, plotting
a point for every hourly increase. As the interval increases we drift down the shape triangle,
starting at ξ ' 0.8 going down to around ξ ' 0.2 for increments over a month long.

3.3.4 Olsen scaling rule

The Olsen group in Zurich have reported an apparent scaling result for absolute returns which
is of substantial empirical interest. They record the log of the expected absolute returns over
an interval of length s,

v(t) = log E |y∗(t)| ,
and find that

∂v(t)

∂ log t
' H,

where H is around 0.58 for a freely floating exchange rate, for a wide range of values of t. Of
course in the case where y∗(t) is a standard Brownian motion H would be exactly 0.5. Can Lévy
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Figure 3.7: Temporal aggregation of 5 minute returns for exchange rate. Plotted is the estimated
NIG distribution, with γ fixed at 2.1, using a shape triangle.

processes reproduce this scaling law? This is quite an interesting question for it would mean the
apparent scaling law could be explained without the use of dynamics.

For a GH Lévy process with µ = β = 0 we have

v(t) = log

√
2

π
+ logE |z(t)|1/2 ,

where z(t) is a GIG Lévy process. In the case where z(t) is either a gamma or IG Lévy process
we can evaluate this function explicitly.

In the IG(δ, γ) case z(t) ∼ IG(δt, γ) so that

v(t) = log
2

πγ
+ log g (δγt) , where g(x) = xexK0(x)

= log
2

πγ
+ log g

(
elog t+log δγ

)
.

Let us define φ(x) = log g(ex) then, using the asymptotics of K0(.) we can see that φ(x) has
linear asymptotes both for x → −∞ and for x → ∞, the slopes of the asymptotes being,
respectively, 1 and 1/2. The formula for the slope is

φ′(x) = 1 + ex − exK1(e
x)

K0(ex)
, (3.13)

which implies
∂v(t)

∂ log t
= φ′ {log(δγ) + log t} .

Notice this indicates that the derivative changes very slowly with t when t is around one. Table
3.6 gives some values of ∂v(t)/∂ log t, which suggests this derivative is around 0.55 for the
empirically plausible values δ = 0.96 and γ = 2.1. Importantly the value is always above 0.5,
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δγ ∂ log E{|z(t)|}
∂ log(t) δγ ∂ log E{|z(t)|}

∂ log(t)

.0203 .771 1.78 .548
.108 .690 2.31 .539
.235 .646 3.00 .532
.384 .618 3.94 .526
.563 .598 5.25 .520
.778 .582 7.16 .515
1.05 .568 10.1 .511
1.37 .557 15.0 .508

Table 3.6: Slope of log E{|z(t)|} at t around one.

which implies that the Olsen scaling law can be explained by the non–Gaussian feature of Lévy
processes. It is not necessary to have serial dependence in the log-price process to obtain this
characteristic.

3.3.5 Fitting multivariate models

General EM framework

The use of BFGS provides a reliable and rather fast way of computing the ML estimator for
univariate GH models. However, the direct maximisation of the likelihood in the d dimensional
multivariate GH model

yn|σ2n ∼ N(µ+Σβσ2n, σ
2
nΣ), σ2n

i.i.d.∼ GIG(ν, δ, γ), |Σ| = 1, n = 1, 2, ..., T,

is onerous even though the density of yn is known to be (2.32). This is due to the presence of
the unknown Σ matrix.

Recall the general principle of the EM algorithm. We introduce auxiliary data, x =
(
σ21, ..., σ

2
T

)′

and then work with the augmented likelihood

log f(y, x; θ) = log f(y|x; θ) + log f(x; θ).

In the EM algorithm we calculate the posterior expectation of the augmented likelihood evalu-
ated at some initial parameter point θ(0). This is then maximised, giving the algorithm

θ(j+1) =arg
θ

max

∫
{log f(y, x; θ)} f(x|y; θ(j))dx j = 1, 2, ...

Each step improves log f(y; θ) and so iterating it will converge to a maximum.
Two tasks are left in order to implement this method: (i) computing σ2n|yn; θ(j), (ii) max-

imising the expected likelihood rapidly.

Expectations with respect to σ2n|yn; θ(j)

In the GH model we need to work with

f(σ2n|yn) ∝ f(yn|σ2n)f(σ2n)

∝ 1

(σ2n)
d/2

exp

(
−(yn − µ)′Σ−1 (yn − µ)

2σ2n
+ (yn − µ)′ β −

β′Σβσ2n
2

)

×
(
σ2n

)ν−1
exp

[
−1

2

{
δ2
(
σ2n

)−1
+ γ2

(
σ2n

)}]
.
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This implies

σ2n|yn ∼ GIG

(
ν − d

2
,
√
δ2 + (yn − µ)′Σ−1 (yn − µ),

√
γ2 + β′Σβ

)

= GIG (νp, δpn, γ
p) .

A useful feature of X ∼ GIG(ν, δ, γ) variable is that

E(Xα) =
(γ/δ)ν

Kν(δγ)

Kα+ν(δγ)

(γ/δ)α+ν
=

(
δ

γ

)α Kα+ν(δγ)

Kν(δγ)
, δγ > 0, (3.14)

while

E log(X) =
∂E [exp {ξ log(X)}]

∂ξ

∣∣∣∣
ξ=0

=
∂E(Xξ)

∂ξ

∣∣∣∣∣
ξ=0

, (3.15)

which is easy to calculate numerically from (3.14).

Maximisation step

In order to compute θ(j+1) we have to maximise E log f(y, σ2; θ), where the expectations are
fixed and are carried over σ2n|yn; θ(j). This is

E log f(y, σ2; θ) = E log f(y|σ2; θ) + E log f(σ2; θ)

which equals

const+ Tν log (γ/δ)− T logKν(δγ) + T (ν − 1− d/2)E (log σ2)− T

2
δ2E (σ−2)− T

2
γ2E (σ2)

−1

2

T∑

n=1

(yn − µ)′Σ−1 (yn − µ) E
(
σ−2n

)
− T

2
β′ΣβE (σ2) + T (y − µ)′ β,

where

E (σ−2) = T−1
T∑

n=1

E
(
σ−2n

)
, E (σ2) = T−1

T∑

n=1

E
(
σ2n

)
, E (log σ2) = T−1

T∑

n=1

E log
(
σ2n

)
.

If we write

yE (σ−2) = T−1
T∑

n=1

ynE
(
σ−2n

)
,

then

β(j+1) =
Σ−1

(
y − µ(j+1)

)

E (σ2)
, µ(j+1) =

yE (σ2)− Σβ(j+1)

E (σ2)
,

which implies

µ(j+1) =

(
E (σ−2)− 1

E (σ2)

)−1{
yE (σ−2)− y

E (σ2)

}
.

Concentrating β and µ out of the objective function we just have to maximise with respect to Σ

λ (|Σ| − 1) /2− tr(Σ−1S)/2

where

S =
T∑

n=1

{
E
(
σ−2n

) (
yn − µ(j+1)

) (
yn − µ(j+1)

)′}
− T

E (σ2)

(
y − µ(j+1)

) (
y − µ(j+1)

)′
,
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and λ is an additional Lagrangian parameter to ensure that |Σ| = 1. This produces2

Σ(j+1) = |S|−d S,

which allows us to compute

β(j+1) =

(
Σ(j+1)

)−1 (
y − µ(j+1)

)

E (σ2)
.

When we plug in the solutions to β(j+1), Σ(j+1) and µ(j+1) we can see that all remains is to
maximise

ν log (γ/δ)− logKν(δγ) + (ν − 1− d/2)E (log σ2)− δ2

2
E (σ−2)− γ2

2
E (σ2),

with respect to ν, δ and γ.
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Figure 3.8: EM algorithm output — based on 2 simulations. Top left: log10 transform of change
in log-L per iteration. Others: θ(j) against j − 1. Simulation based T = 3, 000 from a GH
model with ν = −0.5, δ = 2.0, γ = 0.3, µ = 0.0, β = −0.1. Code: em gh.ox.

Figure 3.8 shows the results of using the EM algorithm on two simulated datasets drawn
from a univariate GH model with ν = −0.5, δ = 2.0, γ = 0.3, µ = 0.0, β = −0.1. In both
cases we employed a sample size of 3, 000. The code to carry out the EM for the GH problem

2Differentiating with respect to Σ and equating to zero gives

λΣ−1 = Σ−1SΣ−1 implying Σ = λ−1S.

Multiplying the above equation by two and then take determinants of both sides gives

|Σ| = 1 = λ−d |S| implying Σ = |S|−d S.
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is contained in em gh basic.ox. It computes around 10 iterations per second on a moderately
powerful (2001) notebook. The top left hand graph shows

log10

{
log f(y; θ(j+1))− log f(y; θ(j))

}
against j.

It shows the first few iterations of the algorithm produce enormous improvements in the value
of the likelihood, while at larger values of j the improvements tail off. This is a well known
feature of the EM algorithm.

Experiments we have conducted suggest that as d increases the speed of the EM algorithm
increases, with convergence occurring after a smaller number of iterations. Indeed for 3 or 4
dimensional problems, less than 100 iterations are typically required. This is not surprising for
as d increases we have more information about the latent σ2n, which is the key to the slowing of
EM algorithms. Further, the computational load of each iteration of the EM algorithm increases
substantially less quickly than linearly with d.

Empirical results

We start by fitting some bivariate models. The first example of this is a fit of the German
DM and French Franc against the US Dollar which is reported in Table 3.7 and Figure 3.9.
The Table shows the expected dramatic improvement in fit associated with these multivariate

MLE of GH parameters Likelihoods
µ β δ γ ν Σ GH β = 0 δ = 0 γ = 0 N

DM .0221 -.0310 .365 1.03 -1.06 3.83 3.59 -2,865.2 -2,867.6 -2,933.9 -2,869.9 -3,913.7
FF .0241 -.0143 3.59 3.62 4,835 4,834 4,785 4,834 4,127

Table 3.7: ML estimation of bivariate GH model for DM and FF against US Dollar. Figures in
italics are improvement in the log-likelihood compared to fit of the two univariate models. Code:
em gh mult.ox.

models, for the DM and FF are highly related currencies. This is shown up by the estimated
Σ matrix. Again ν is estimated to be negative, while the fit of the GH model is very close to
the bivariate skewed Student t in this case. The normal gamma model is quite a lot poorer in
this multivariate setting. The result in the italics gives the likelihood for the multivariate model
minus the sum of the likelihoods for the DM and FF univariate models. So the number for the
normal case shows an improvement in the likelihood of 4, 127. Although this is very substantial,
the improvements for the other models are much higher. Hence the gains in using GH models is
even higher in the multivariate case than one might have expected from the univariate analysis.

Figure 3.9 shows the fitted bivariate normal and GH densities for the DM and FF returns.
The graphs have been drawn to show the densities in places where the log-density does not drop
12 from the mode. This gives an impression of the plausible scatter of points from this variable.
The bivariate normal density is tightly packed, while the GH model gives a wider range of
possible points while the tails of the log-density appear linear or slower in each direction.

Table 3.8 gives the results for all the bivariate relationships which involve the DM. Broadly
similar conclusions follow from the above, except the degree of dependence between the curren-
cies is smaller in these other cases. Interestingly the UK Sterling is negatively related to the
DM returns. Throughout the table the estimated values of ν ranges between about -0.5 and
-1.5. This is an important common theme, again suggesting evidence against the use of normal
gamma models.

Table 3.9 gives the GH fit to all six exchange rate return series. This high dimensional
model has a low value of ν, which suggests the fit is very close to a skewed multivariate Student
t distribution. The skewness parameters are important. The NIG fits worse than the skewed
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Figure 3.9: Fit of bivariate Gaussian and GH models for the DM and FF against the Dollar.
(a) ML fit of bivariate Gaussian density, (c) gives the log of this density. (b) ML fit of bivariate
GH density, (d) gives the log of this density. Code: em gh mult.ox.

Student t but is much better than the normal gamma model. All these models are enormous
improvements over the multivariate normal fit to the data.

Table 3.10 gives the corresponding result for the four dimensional equity return data. Here
the elements of β are all estimated to be negative, indicating common negative skewness. That
is the large negative movements have a tendency to occur in all the markets at the same time.
In this case the non-symmetries are important, while the normal gamma is again considerably
worse than the Student t or the NIG distributions.

3.4 Conclusion

To be added.

3.5 Appendix

3.5.1 Maximum likelihood estimation of GIG models

For known ν and a sample x1, ..., xT , the likelihood equations for δ̂, γ̂ are (Jørgensen (1982,
Section 4.1))

δ̂

γ
Rν
(
δ̂γ
)
=

1

T

T∑

n=1

xn and
γ̂

δ
R−ν

(
δ̂γ
)
=

1

T

T∑

n=1

1

xn
. (3.16)

So long as the empirical variance of the {xn} is greater than zero then there always exists a
unique solution to these equations. It is quite simple if |ν| ≤ 1. Then we can use the following
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DM MLE of GH parameters Likelihoods
+ µ β δ γ ν Σ GH β = 0 δ = 0 γ = 0 N

.0221 -.0310 .365 1.03 -1.06 3.83 3.59 -2,865 -2,867 -2,933 -2,869 -3,913
FF .0241 -.0143 3.59 3.62 4,835 4,834 4,785 4,834 4,127

.0130 -.0434 .655 1.78 -1.46 2.31 .049 -4,518 -4,524 -4,535 -4,520 -4,868
Can -.0116 .167 .049 .432 11.8 7.4 12.6 12.2 3.2

.0429 .0283 .660 1.36 -1.62 2.24 2.27 -4,592 -4,605 -4,615 -4,594 -5,023
SF .0548 -.129 2.27 2.76 3,607 3,599 3,596 3,609 3,179

.0185 .0424 .737 1.37 -.848 1.15 0.60 -7,258 -7,264 -7,281 -7,279 -7,730
JY .0578 -.175 0.60 1.18 667 666 671 651 632

.0315 -.303 .543 1.95 -.391 1.57 -0.98 -5,975 -6,026 -5,993 -5,986 -6,457
BP .0449 -.361 -0.98 1.24 1,413 1,365 1,408 1,414 1,298

Table 3.8: ML estimation of bivariate GH models. Fits DM plus another exchange rate against
US Dollar. Figures in brackets are improvement in the log-likelihood compared to fit of the two
univariate models. Code: em gh mult.ox.

δ = .638, γ = .586, ν = −2.22,

Σ =




.628 .0692 .0754 .0760 .0199 −.115
.0692 3.09 2.86 3.13 1.66 −1.95
.0754 2.86 2.91 2.99 1.57 −1.86
.0760 3.13 2.99 3.82 1.85 −2.08
.0199 1.66 1.57 1.85 3.45 −1.19
−.1157 −1.95 −1.86 −2.08 −1.19 2.54




, µ =




−.0115
.0307
.0346
.0494
.0605
.0239




, β =




.120
.0875
−.0647
−.182
−.148
−.254




.

Likelihoods

GH β = 0 δ = 0 γ = 0 NIG N
-9,671 -9,726 -9,791 -9,672 -9,697 -11,635

Table 3.9: Fit of the multivariate GH model to the six dimensional exchange rate return vector:
CD, DM, SF, JY and Sterling. β = 0 imposes symmetry. δ = 0 fits the normal gamma model,
γ = 0 fits the skewed student t distribution. Code: em gh mult.ox.

route. There is a unique δ̂γ which numerically solves

Dν

(
δ̂γ
)
=

(
1

T

T∑

n=1

xn

)(
1

T

T∑

n=1

1

xn

)
≥ 1, (3.17)

which implies a value

δ̂

γ
=

(
1

T

T∑

n=1

xn

)
Rν
(
δ̂γ
)−1

.

Jørgensen (1982, Ch. 4) suggests numerically solving (3.17), based on extensive experiments,
by finding a value of x such that

d(x) = log {Dυ(e
x)− 1} ,

equals

log

{(
1

T

T∑

n=1

xn

)(
1

T

T∑

n=1

1

xn

)
− 1

}
.

A graph of d(x) against x for various values of ν are given in Jørgensen (1982, Figure 4.1). The
expansion

Dυ(ω) = 1 +
1

ω
+
−1

2ν
2 + 1

8

ω3
+O(ω−4),

67



δ = 1.47, γ = .660, ν = −1.72,

Σ =




1.54 .778 .654 .145
.778 1.18 .510 .181
.654 .510 .977 .128
.145 .181 .128 1.26


 , µ =




.201

.132

.161
.0872


 , β =



−.0668
−.0105
−.0438
−.0580


 .

Likelihoods

GH β = 0 δ = 0 γ = 0 NIG N
-9,268 -9,285 -9,293 -9,270 -9,271 -9,694

Table 3.10: Fit of the GH model to the four dimensional equity return vector: DAX 30, FTSE
100, S&P500, Nikkei 100. β = 0 imposes symmetry, δ = 0 implies the normal gamma model,
γ = 0 is the skewed student t. Code: em gh mult.ox.

suggests the starting value

x = − log

{(
1

T

T∑

n=1

xn

)(
1

T

T∑

n=1

1

xn

)
− 1

}
.

Finally, Jørgensen (1982, Ch. 4) shows that there is always a unique solution to these equations.
However, when |ν| > 1 and

E(X)E(X−1) ≥ |ν|
(|ν| − 1)

we have boundary solutions with

(
δ2, γ2

)
=

{
(0, 2ν/E(X)) , ν > 1(
−2ν/E(X−1), 0

)
ν < −1.

The first of these two cases corresponds to a gamma distribution, the second to a reciprocal
gamma.

3.6 Exercises

3.7 Bibliographic notes

3.7.1 Simulation of Lévy processes

The simulation of Lévy processes has to be carried out with some care. There are extensive
results available. Some of the most useful are the infinite series representation developed by
Rosinski (2001). The special case of gamma process simulation is discussed by Wolpert and
Ickstadt (1999), while some more general discussion is given in Walker and Damien (2000). We
should also note the important recent contribution of Asmussen and Rosinski (2000).

3.7.2 Empirical fit of Lévy processes

There is a large literature on studying the fit of various parametric models to the marginal
distribution of returns of speculative assets. Most of these papers are not based on a background
of a Lévy process and so risked fitting an incoherent (from a continuous time viewpoint) model.
An example of this is Praetz (1972) in his work on the student t distribution. A notable exception
is Mandelbrot (1963) where he used stable distributions and related this to stable processes.

The likelihood methods we used to fit the models are entirely standard. We have used
profile likelihoods to compute measures of uncertainty as these are known to be more reliable
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than using the first order Gaussian asymptotic distribution. A discussion of this literature is
given in Barndorff-Nielsen and Cox (1994, Section 3.4). The use of profile likelihoods for ν in the
generalised hyperbolic is new as was the use of the EM algorithm in this context. Independent
and concurrent work on the use of the EM algorithm for this problem was carried out by
Protassov (2001). An elegant discussion of the EM algorithm is given in Tanner (1996). The
theory of robust standard errors for maximum likelihood estimation is standard in econometrics
and statistics. Leading references are White (1982) and White (1994).

Barndorff-Nielsen and Prause (2001) showed that the Olsen scaling law is explained by the
NIG Lévy process.
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Chapter 4

Time deformation and chronometers
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Abstract: This Chapter introduces the general idea of building models as chronometers,
which are stochastic processes with non-negative increments. As a generalisation of the notion
of a subordinator, a chronometer can be used to change the clock of Brownian motion so that
its increments are no just fat tailed but also serially dependent. This is an important feature in
financial econometrics and provides a realistic description of the properties of exchange rate and
equity market returns. Some of the chronometers are built from Lévy processes, others from
non-linear stochastic differential equations. We study some of the properties of the resulting
subordinated processes and discuss methods for estimating the models as well as multivariate
versions of these models.

4.1 What is this Chapter about?

The sections of this Chapter have the following themes:

• Models built out of general chronometers are analysed. The leading case is where Brownian
motion is deformed, postponing a discussion of more general Lévy based models until the
end of the Chapter

• Stationary models for τ . The leading cases will be where τ is a

1. non-Gaussian OU process driven by a Lévy process,

2. diffusion,

3. superpositions of stationary processes.

• The probabilistic behaviour of stochastic volatility models.

• Econometrics of stochastic volatility based on low frequency data such as daily returns.

• Multivariate models for asset prices with non-independent increments.

• SV models based on more general Lévy processes than Brownian motion.

Once again we have made the main text as self-contained as possible, leaving a discussion of
the corresponding literature to the end of the Chapter. That bibliographical section will focus
on historical developments in the subject and papers which develop interesting themes in more
depth than we are able to cover.

4.2 General time deformation

4.2.1 Introduction

In financial economics we often build models by time deforming — that is we take a simple
stochastic process and construct a more flexible model by replacing its natural time clock with
a chronometer (a random process with non-decreasing paths). The most well known example of
this is where we change the time clock of a Brownian motion and add a general mean process
so that log-prices are modelled as

y∗(t) = a∗(t) + w(τ ∗(t)). (4.1)

Here w is standard Brownian motion which is assumed independent from a∗, the mean process,
and τ∗, the chronometer. A common choice for a∗ is to write

a∗(t) = µt+ βτ ∗(t), (4.2)
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which allows the mean process to change with the chronometer. In more general setups w, a∗

and τ∗ can be jointly dependent processes.
A basic version of the above setup plays a key role in Chapter 2 of this book. There τ ∗

is taken to be a subordinator, that is a Lévy process, in which case under (4.2) y∗ is also a
Lévy process and so has independent increments. Empirically we can build rather compelling
models by time deformation by a subordinator. An example of this is where τ ∗ is an generalised
inverse Gaussian (GIG) Lévy process (so it is a subordinator), then y∗ is a generalised hyperbolic
(GH) Lévy process which is rich enough to describe the marginal distribution of returns yn at a
particular time resolution ∆. However, subordinator based models inevitably deliver log-price
processes with independent increments implying they can be easily rejected by empirical tests
which demonstrate important degrees of serial dependence amongst returns.

Although the construction of Lévy processes via time deformation is stimulating, the general
principle of time deformation looks at first sight ad hoc. This turns out not to be true in financial
economics. Recall that special semimartingales play a central role in finance and that they can
be decomposed as

y∗(t) = a∗(t) +m∗(t),

where a∗ is a predictable process with locally bounded variation and m∗ is a local martingale.
If we additionally assume that both a∗ and m∗ have continuous sample paths, then it can be
shown that y∗ can always be written in the form of (4.1). Hence all financial processes with
continuous sample paths fall within the time deformation framework. This Chapter will analyse
this fundamental class in some depth.

Mostly our focus will be on chronometers with serially dependent increments — moving us
away from Lévy processes. The next section will give results for the general class, while the rest
of this Chapter will specialise the framework to chronometers which are defined in the integrated
form

τ∗(t) =
∫ t

0
τ(u)du, (4.3)

where τ is a non-negative, càglàd process. This construction implies that these chronometers
are integrated processes which are differentiable with

∂τ∗(t)
∂t

= τ(t).

Hence they do not nest subordinators, for subordinators are pure jump processes. The resulting
y∗ are called stochastic volatility models and have the important property that they have con-
tinuous sample paths. Further, the differentiability of τ ∗ means that y∗ can be written in the
form of a SDE with

dy∗(t) = a(t)dt+ σ(t)dw(t),

where
σ(t) =

√
τ(t).

In this context σ is called the spot or instantaneous volatility, while τ is the corresponding spot
(instantaneous) variance. This setup is by far the most used time deformation model class in
all subareas of financial economics.

4.3 Time deformed Brownian motion

4.3.1 Mixture of normals

Recall h̄ > 0 is the notation for a fixed interval of time and that the corresponding returns over
that time interval are written as

yn = y∗(h̄n)− y∗(h̄ (n− 1)−), n = 1, 2, 3, .... (4.4)
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The properties of these returns can be derived under a time deformation assumption (4.1). Here
will assume τ ∗ and a∗ are jointly independent of w. Then

yn|τn ∼ N(an, τn),

where
τn = τ∗(nh̄)− τ ∗ {(n− 1) h̄−} (4.5)

and
an = a∗(nh̄)− a∗ {(n− 1) h̄−} .

We call τn actual variance. By making τn time dependent this induces dependence in the returns
yn. When (4.2) holds then

an = µh̄+ βτn, (4.6)

which is an assumption we often focus on.
In this section we will look at the stochastic properties of the log-price itself y∗(t), recalling

that y∗(0) = 0.

4.3.2 Cumulant functions of y1

The conditional cumulant function of y1 can be calculated just using the properties of the normal
distribution. In particular

K{ζ ‡ y1|a1, τ1} = log [E exp {ζ ‡ y1} |a1, τ1]

= ζa1 +
1

2
ξ2τ1.

implying unconditionally, assuming model (4.6),

K{ζ ‡ y1} = ξµt+K{ξβ +
1

2
ξ2 ‡ τ1} (4.7)

which is determined by the cumulant function of τ ∗. Important special cases of the above results
include that

E {y1} = µt+ βE {τ 1} and Var{y1} = β2Var{τ 1}+ E {τ 1}

and
κ3{y1} = β3κ3{τ1}+ 3βVar{τ 1},

where κr{X} denotes the r − th cumulant of X. Finally,

κ4{y1} = 3Var{τ 1}+ 6β2κ3{τ1}+ β4κ4{τ1}.

The same argument delivers the predictive cumulant function

K{ζ ‡ y1|F0} = ξµt+K{ξβ +
1

2
ξ2 ‡ τ1|F0},

and the associated cumulants, e.g.

E {y1|F0} = µt+ βE {τ 1|F0} ,

and
Var{y1|F0} = β2Var{τ 1|F0}+ E {τ 1|F0} .
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4.4 Non-negative stationary processes

In the introduction we suggested building chronometers as

τ∗(t) =
∫ t

0
τ(u)du.

In this section we will discuss how to build non-negative processes for τ . Broadly this will be
based on non-Gaussian Ornstein-Uhlenbeck processes and on discussions. We first focus on the
former case, before moving on to the latter class.

4.4.1 OU type processes

First-order autoregression

Independently Slutsky and Yule introduced the linear autoregression into the probability and
statistics literature in the early 1920s. Suppose that {cn} is an i.i.d. innovation sequence, then
we define a first-order autoregression {xn} as

xn+1 = ρxn + cn. (4.8)

There are two ways of building a parametric model of this type which is strictly stationary when
|ρ| < 1. We can specify: (i) the distribution of cn, implying the distribution of xn (which depends
upon ρ), or (ii) the distribution of xn, implying the distribution of cn (which also depends upon
ρ). Neither route is assumption free, although for the moment we will ignore this, returning to
this issue later in this Chapter.

Suppose we have written down a valid autoregression with |ρ| < 1 then

xn+1 = ρnx0 +
n∑

j=0

ρn−jcj = ρnx0 +
n∑

j=0

ρn−j (zj+1 − zj) , (4.9)

where zn+1 =
∑n
j=0 cj . It is then easy to see that if the first two moments of {cn} exist then

Cor(xn, xn−s) = ρ|s|, which exponentially damps down with lag length s.
Sometimes first-order autoregressions are reparameterised into the equilibrium correction

model , which writes

xn+1 − xn = (ρ− 1)xn + (zn+1 − zn) , where zn+1 =
n∑

j=0

cj . (4.10)

Here the increment in the level of the process is regressed on the current level. If the process is
stationary the population regression coefficient ρ− 1 has to be negative.

OU type processes

Equation (4.9) is insightful as it has a natural continuous time equivalent. The continuous time
first-order autoregression, or Ornstein-Uhlenbeck (OU) type process has, for λ, t > 0,

x(t) = e−λtx(0) +
∫ t

0
e−λ(t−s)dz(s)

= e−λtx(0) + e−λt
∫ t

0
eλsdz(s),

where z(t) is a Lévy process. As it drives the OU process we say that z(t) is the background
driving Lévy process (BDLP). The OU process is often written in the form of an Itô stochastic
differential equation (SDE)

dx(t) = −λx(t)dt+ dz(t),
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which has many similarities to the ECM briefly discussed in (4.10). Our main concern will be
with BDLPs with no negative increment. In such cases a necessary and sufficient condition
for the existence of such a process x(t) is that E log (1 + z(1)) < ∞, or equivalently, that∫∞
1 log xW (dx) < ∞ where we recall W (x) is the Lévy measure of z(1). The latter case is
shown to be sufficient in the Appendix to this Chapter.

The OU process is reasonably familiar when the BDLP is Brownian motion with drift µ and
volatility σ. Then the solution to the SDE is

x(t)|x(0) ∼ N

{
e−λtx(0) +

µ

λ

(
1− e−λt

)
,
τ

2λ

(
1− e−2λt

)}
,

implying for regularly spaced data the OU process is exactly a Gaussian first-order autoregres-

sion. The unconditional distribution of this process is x(t) ∼ N
(
µλ−1, τλ−12−1

)
. This shows

that λ enters the stationary solution to the OU process.
In our later development the fact that λ enters the stationary solution to the SDE will lead

to difficulties and so we prefer to remove this feature now. It is convenient to do this by a simple
change of time in the stochastic integral. We will write OU process as

x(t) = e−λtx(0) +
∫ t

0
e−λ(t−s)dz(λs), (4.11)

or in the form of a SDE
dx(t) = −λx(t)dt+ dz(λt). (4.12)

This equation will play a crucial role in the rest of this book. In the case where the Lévy process
is Brownian motion, dz(λt) =

√
λdz(t), resulting in

x(t)|x(0) ∼ N

{
e−λtx(0) + µ

(
1− e−λt

)
,
τ

2

(
1− e−2λt

)}

and that x(t) ∼ N (µ, τ/2). However for more general Lévy processes the result dz(λt) = λdz(t)
does not hold (an example of this is where z(t) is an α-stable process then dz(λt) = λα/2dz(t)).
Instead we think of dz(λt) as speeding up (slowing down) the BDLP for large (small) values of
λ compared to dz(t). In fact, if x1(t) is an OU process with λ = 1, then x(t) = x1(λt) is an
OU process with rate λ. Hence λ can be thought of as a time change. In fact if x1(t) is an OU
process with λ = 1 then

x(t) = x1(λt),

is an OU process with rate λ.

Non-negative OU-D processes

Our main concern in this Chapter will be to develop non-negative OU process so that they can
be used as the basis of chronometers in (4.3). To emphasise this requirement we will write such
SDE based models using the notation for a variance

dτ(t) = −λτ(t)dt+ dz(λt). (4.13)

The solution is of the form

τ(t) = e−λtτ(0) +
∫ t

0
e−λ(t−s)dz(λs) (4.14)

= e−λtτ(0) + e−λt
∫ λt

0
esdz(s). (4.15)
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(b) OU−Poisson process σ2(t)

Figure 4.1: (a) Sample path of Poisson process z(λt) with λ = 0.45 and ψ = 8,(b) Corresponding
OU-Poisson process . Code: OU graphs.ox

In order to guarantee τ is non-negative we will require that the BDLP has non-negative incre-
ments — that is z will be a subordinator. Correspondingly τ moves up entirely by jumps and then
tails off exponentially. If z(t) is an infinite activity process then the innovation e−λt

∫ λt
0 esdz(s)

must be strictly positive when t ≥ 0 however small t is. Otherwise there is a positive probability
that the innovations from the OU process will be exactly zero.

The very simplest example of a non-negative OU process is where the BDLP is a standard
Poisson process with intensity ψ. We call this the OU-Poisson process, establishing the nota-
tion OU-D process which puts the name of the distribution of the BDLP at time one, written
generically as D, immediately after the OU title. In the probability literature the OU-Poisson
process is often called a shot noise and appears commonly in, for example, models of physical
storage. In Figure 4.1 we have drawn a sample path from this process taking the intensity as
ψ = 8 and λ = 0.45. Here τ(t) jumps up by one unit, then exponentially decays. This is seen
clearly by writing

τ(t) = e−λtτ(0) +
N(λt)∑

j=1

e−λ(t−aj),

where N(t) is a Poisson process with {ai} being arrivals times so that a1 < a2 < ....
It is possible to give some rather general properties of OU processes. Here we will focus on

two aspects: the autocorrelation function (assuming it exists) and kumulant function of τ(t).
The autocorrelation function of τ has a simple structure. So long as Var(z(1)) exists,

r(u) = Cor {τ(t), τ(t− u)} = exp (−λ |u|) .

It has the important limitation that it can only allow positive serial dependence which damps
exponentially.

The kumulant function of τ(t) can be directly found from the kumulant function of z(1).
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Let us define, for θ > 0,

ḱ(θ) = log E
[
exp

{
−θσ2(t)

}]
and k(θ) = log E [exp {−θz(1)}] .

These two kumulant functions are related by the fundamental equality

ḱ(θ) =

∫ ∞

0
k(θe−s)ds. (4.16)

This result is proved in the Appendix. It follows that if we write the cumulants of τ(t) and z(1)
(when they exist) as, respectively, κ́m and κm (m = 1, 2, ...) we have that

κm = mκ́m, for m = 1, 2, ... .

The results on the kumulant function of τ(t) can be illustrated by working with the OU-
Poisson process. Then

k(θ) = −ψ
(
1− e−θ

)
and κm = ψ m = 1, 2, ....

The simple implication of this is that the cumulants of τ(t) are κ́m = m−1ψ while the kumulant
function is

ḱ(θ) = −ψ
∫ ∞

0

{
1− exp

(
−θe−s

)}
ds

= −ψ
∫ θ

0

1− e−t
t

dt where t = θe−s,

= −ψ {E1(θ) + log θ + γ} ,
where γ is Euler’s constant and E1(x) is the exponential integral.

More OU-D models It is possible to build many OU processes by writing down sensible
BDLPs (they just need that E log (1 + |z(1)|) < ∞, the necessary and sufficient condition for
the existence of a valid OU process). Here we build on the BDLPs introduced in Chapter 2:
compound processes, gamma processes and inverse Gaussian processes. We could have focused
on any member of the GIG family for everyone provides a valid basis for an OU process since
they satisfy the above condition.

• OU-compound process. Suppose the BDLP is a compound process based on a Poisson
process N(t) with intensity ψ and i.i.d. positive innovations {ds}. Then the process can
be represented as

τ(t) = e−λtτ(0) +
N(λt)∑

j=1

e−λ(t−aj)dj .

In the probability literature this type of model is often called generalised shot noise.. We

saw in Chapter 2 that k(θ) = −ψ
{
1−M(θ ‡ d1)

}
, where M (θ ‡ c1) = E exp(−θd1). Hence

κm = ψE(dm1 ), and so the cumulants of τ(t) are κ́m = m−1ψE(dm1 ).

• OU-Γ. Suppose z(t) is the infinite activity Γ (ν, α) Lévy process. We know that k(θ) =
ν log (1 + θ/α) which implies

ḱ(θ) = ν

∫ ∞

0
log

(
1 +

θ

α
e−s

)
ds

= ν

∫ θ/α

0

1

t
log (1 + t) dt where t =

θ

α
e−s

= ν
∞∑

j=1

(−1)j (θ/α)
j

j2
for 0 ≤ θ/α < 1.

The cumulants κm = m!ν/αm, imply the cumulants of τ(t) are κ́m = α−m (m− 1)!ν.
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Figure 4.2: (a) Sample path of Γ(4, 200) process z(λt) with λ = 0.45,(b) Corresponding OU-Γ
process. Code: OU graphs.ox

• OU-IG process. The IG based Lévy process can also be used as the BDLP. We know that

k(θ) = γδ − δ
(
γ2 + 2θ

)1/2
which implies

ḱ(θ) = δγ

∫ ∞

0

{
1−

(
1 + 2γ−2θe−s

)1/2}
ds

= δγ

∫ 2θγ−2

0

1

t

{
1− (1 + t)1/2

}
dt, t = 2θγ−2e−s.

The cumulants
κm = δγ2m−11 · 3 · 5 · ... · (2m− 3) ,

implying the corresponding ones for τ(t) are

κ́m =
δγ2m−11 · 3 · 5 · ... · (2m− 3)

m
.

Prediction distribution: τ(t)|τ(0) Later we will wish to predict future levels of the volatility.
Here we will write this as the distribution of τ(t)|τ(0). Clearly this has a simple structure for

τ(t) = e−λtτ(0) +
∫ t

0
e−λ(t−s)dz(λs)

only involves, at time 0, the unknown innovation

e−λt
∫ t

0
eλsdz(λs) = e−λt

∫ λt

0
esdz(s). (4.17)

Recalling we wrote the first two cumulants of z(1) as κ1 and κ2, then

E {τ(t)|τ(0)} = e−λtτ(0) + e−λtκ1

∫ λt

0
esds

= e−λtτ(0) + κ1
(
1− e−λt

)
,
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while Var {τ(t)|τ(0)} = 2−1κ2
(
1− e−2λt

)
. Of course these are reasonably familiar from results

on Gaussian OU processes, which are used in financial economics.
More generally we can write the kumulant function of the forecasted volatility as

K {θ ‡ τ(t)|τ(0)} = log E [exp {−θτ(t)} |τ(0)] (4.18)

= −θe−λtτ(0) +
∫ λt

0
k(e−λtθes)ds,

= −θe−λtτ(0) +
∫ λt

0
k(θe−u)du, e−u = ese−λt,

recalling that k(θ) = log E [exp {−θz(1)}]. Of course (4.16) follows from this expression by
allowing t to tend to infinity.

Non-negative D-OU processes

An alternative modelling approach So far OU processes have been specified via the model
for the BDLP. The stationary distribution of τ(t) is implied by this model choice, not designed.
An alternative is to design directly the marginal distribution of τ(t) and then work out the
implied BDLP. We call these models D-OU processes. From a modelling viewpoint this new
setup has advantages for empirical studies often give us a clear impression about good candidates
for the marginal distribution of stationary processes, while the innovations driving the stationary
process are not observable.

In this section we first ask what class of marginal distributions can yield OU processes? We
then relate the unconditional cumulants of τ(t) to those of the BDLP. Finally we discuss an
important class of processes whose marginal law is the GIG distribution.

Self-decomposable distributions Suppose we wish τ(t) to be an OU process with a marginal
distribution D. Is it possible to construct a BDLP to get such a process? The answer is not
always. A simple counter example is where τ(t) is marginally discrete (e.g. binary), then no OU
process exists with this marginal law for the exponential damping means the discrete support
cannot be satisfied. So what is the required condition?

For D to yield a valid OU process, D has to be self-decomposable. This condition is not very
familiar in econometrics and finance and so we will spend some time to explain it. It is most
easily understood by thinking of our first order autoregression (4.8). If {xn} is stationary with
marginal distribution D and associated characteristic function C(θ ‡ xn) = E exp(iθxn), then

C(θ ‡ xn) = C(ρθ ‡ xn−1)C(θ ‡ cn) = C(ρθ ‡ xn)C(θ ‡ cn).

Now as ρ changes so must the distribution of cn. To reinforce this we rewrite the above equation
in the following notation

C(θ) = C(ρθ)Cρ(θ).

It now becomes clear that for D to form a valid OU process a necessary and sufficient condition
is that C(θ)/C(ρθ) is a valid characteristic function for all values of ρ ∈ (0, 1). If this is the case
D is said to be self-decomposable. It is both necessary and sufficient.

Checking for self-decomposability is often a technically demanding task. Fortunately for us
this has been carried out in the probability literature for many of the most familiar models we
come across in econometrics and statistics. Here we will only discuss parametric models which
are valid, leaving the proof of this assertion to the Appendix. In particular we note that all GIG
distributions are self-decomposable and so the GIG-OU model is a valid class of processes.
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In the previous section we showed how to compute the cumulants and kumulant function of
τ(t) from the corresponding results for z(1). Here we go the other way around. In particular,
differentiating (4.16) we find that

k(θ) = log E [exp {−θz(1)}]
= θḱ′(θ)

(where ḱ′(θ) = dḱ(θ)/dθ), while we recall κm = mκ́m. A simple example is where τ(t) ∼
IG(δ, γ), then ḱ(θ) = δγ − δγ

(
1 + 2θγ−2

)1/2
. As a result k(θ) = − θδ

γ

(
1 + 2θγ−2

)−1/2
. Another

important example is where ḱ(θ) = −ν log(1 + θα−1), then k(θ) = −νθα−1
(
1 + θα−1

)−1
.

We have already found in (4.18) that

K {θ ‡ τ(t)|τ(0)} = −θe−λtτ(0) +
∫ λt

0
k(θe−u)du,

which, in this context, can be usefully rewritten as

K {θ ‡ τ(t)|τ(0)} = −θe−λtτ(0) + θ

∫ λt

0
e−uḱ′(θe−u)du

= −θe−λtτ(0) +
∫ θ

θe−λt
e−uḱ′(s)ds, s = θe−u,

= −θe−λtτ(0) + ḱ(θ)− ḱ
(
θe−λt

)
.

This relates the cumulants of the forecast distribution of τ(t) to the cumulants of the marginal
distribution of τ(t).

Implied Lévy density of the BDLP In D-OU process we specify the Lévy density w(x) of
the BDLP z(1) implicitly. These Lévy densities play important roles, both theoretically and
in terms of simulation. It is possible to deduce the BDLP’s w(x) if we know the Lévy density
of D (that is the Lévy density for a Lévy process such that z(1) ∼ D). We will write the Lévy
density corresponding to D as u(x). Then we will prove in the Appendix that

w(x) = −u(x)− xu′(x) and W+(x) =

∫ ∞

x
w(x)dx = xu(x).

We often write W+(x) = u(x) and note that

w(x) = −u′(x).

This gives us simple expressions for transforming the Lévy densities derived in Chapter 2 for Lévy
processes into the Lévy densities of the BDLPs in the D-OU processes. Table 4.1 gives results
for the Γ and IG cases, where the results are relatively simple. An interesting feature of the
Table is that w(x) is finite when x = 0 in the gamma case, which means the corresponding z(t)

is a compound Poisson process
∑N(t)
s=1 cs. Indeed the form of the Lévy density means the Poisson

process has rate ν, while the cs
i.i.d.∼ Γ(1, α), implying that the Γ-OU process is particularly easy

to simulate.

Simulation of non-negative OU processes

Simulation via the density of the increments We saw in Chapter 2 that we can simulate
from Lévy processes by drawing from the increments of the process, which are then summed.
This gives the following Euler approximation
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Distributions D
Γ(ν, α) IG(δ, γ)

u(x) νx−1 exp(−αx) δ√
2π
x−3/2 exp

(
−1

2γ
2x
)

w(x) αν exp(−αx)
(
1
2 +

1
2γ

2x
)

δ√
2π
x−3/2 exp

(
−1

2γ
2x
)

W+(x) ν exp(−αx) δ√
2π
x−1/2 exp

(
−1

2γ
2x
)

Table 4.1: Examples of the Lévy densities for z(1) and τ(t). They are denoted by w(x) and
u(x) respectively.

zh̄(t) =

bt/h̄c∑

j=1

uj , uj
L
= z(h̄), 0 ≤ h̄ ≤ t,

so that as h̄ ↓ 0 the error in the approximation goes to zero. We can use this approximation
to simulate from an OU process (4.15) replacing z by zh̄, implying the approximate OU process
becomes

σ2h̄(t) = e−λtσ2h̄(0) + e−λt
bλt/h̄c∑

j=1

uje
jh̄, uj

L
= z(h̄), 0 ≤ h̄ ≤ λt. (4.19)

Hence for any process where we can simulate from the BDLP we can simulate the corresponding
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Figure 4.3: Simulating a OU-IG(4, 4) process — the approximating the density of

e−λt
∫ λt
0 esdz(s) with t = 8 and λ = 0.5. Density of e−λt

∑bλt/h̄c
j=1 uje

jh̄ for various values
of h̄. Code: OU graphs.ox

OU-D process. An example of simulating the approximate innovation e−λt
∑bλt/h̄c
j=1 uje

jh̄ is given
in Figure 4.3, which displays the resulting density estimated using 160, 000 draws. This is based
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on a OU-IG(4, 4) example with λ = 0.5, and with t = 8. We can see that with h̄ being as low
as 0.01 the discretisation error is quite small.

In practice it is perhaps simpler to carry this out recursively, computing

σ2h̄(h̄j) = e−λh̄σ2h̄(δ (j − 1)) + uj , where uj
L
= z(λh̄). (4.20)

This is the method we employed to simulate the processes reported in Figures 4.1 and 4.2.

Simulation of OU-TS processes The tempered stable Lévy process is characterised through
its Lévy density which has the simple form

w(x) = Ax−κ−1 exp (−Bx) , x, A,B > 0 and κ ∈ (0, 1).

We saw in Chapter 2 that we could use the Rosinski rejection method to approximate z(t) by

I∑

i=1

min

{(
At

biκ

)1/κ

, B−1eiv
1/κ
i

}
, (4.21)

where I(·) is an indicator function, {ei}, {vi}, {bi}, {ui} ,are independent of one another and

over i except for the {bi} process. Here ui
i.i.d.∼ U(0, s), vi

i.i.d.∼ U(0, 1), the {ei} are exponential
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Figure 4.4: Simulating a OU-IG(4, 4) process using the TS representation — approximating

the density of e−λt
∫ λt
0 esdz(s). Density of e−λt

∑I
i=1min

{(
Aλt
biκ

)1/κ
, B−1eiv

1/κ
i

}
exp (λtri)for

various values of I. Code: OU graphs.ox

with mean 1. Further the b1 < ... < bi < ... are the arrival times of a Poisson process with
intensity 1. These draws from z could be used in (4.19) to simulate the OU process. However,
the above approach can be directly extended to allow us to simulate from the e−λt

∫ λt
0 esdz(s)

process. In particular Rosinski has showed that process e−λt
∫ λt
0 esdz(s) is approximated in law

by
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e−λt
I∑

i=1

min

{(
Aλt

biκ

)1/κ

, B−1eiv
1/κ
i

}
exp (λtri) , (4.22)

where the approximation error goes to zero as I → ∞. Here ri
i.i.d.∼ U(0, 1). Again, each

additional term is non-negative and is of Op(i
−1/κ) which means the rate of convergence of the

sum increases as κ→ 0.
Figure 4.4 shows the simulations in the IG(δ, γ) case where κ = 0.5, A = (2π)−1/2 δ and

B = γ2/2. The picture repeats the experiment reported in Figure 4.3, but now varies I in the
sum (4.22). The densities move to the right as I increases, with the result being quite stable
by the time I reaches 5, 000. Of course the advantage of this rejection method is that (4.22)
potentially represents the whole process as a function of t, not just at a particular value of t.

Tail integral inversion We have just seen that we can directly simulate paths from OU-TS
processes. This is a powerful result. However, many interesting Lévy processes cannot be written
down as TS. Here we exploit an extension of the infinite series results we used to simulate the
increments of Lévy processes in Chapter 2. In Appendix 2 we prove an extension of this result
that the stochastic integral

∫ λ

0
f(s)dz(s)

L
=
∞∑

i=1

W−1(ai/λ)f(λri), (4.23)

where {ai} and {ri} are two independent sequences of random variables with the r′is independent
copies of a uniform random variable r on [0, 1] and a1 < ... < ai < ... as the arrival times of a
Poisson process with intensity 1. Here W−1 is the inverse of the tail integral of the BDLP. An
application of this result is that the OU’s innovation (4.17)

e−λt
∫ λt

0
esdz(s)

L
= e−λt

∞∑

i=1

W−1(ai/λt) exp(λtri). (4.24)

Hence we are able to produce i.i.d. draws from the innovations or draws from the whole path
of the OU process. Two examples of this are given below.

• In the Γ-OU case, Table 4.1 implies

W−1(x) = max

{
0,− 1

α
log

(
x

ν

)}
.

Hence as soon as x > ν then W−1(x) = 0, implying that in this case the representation
becomes

e−λt
∫ λt

0
esdz(s)

L
= − 1

α
e−λt

∑

ai<tvλ

log

(
ai
tνλ

)
exp(λtri),

which is finite as z(t) is a compound Poisson process.

• OU-Γ process. In Chapter 2 we showed that for z(1) ∼ Γ(v, α)

W+(x) = v

∫ ∞

x
s−1 exp(−αs)ds = E1(x/α),

which is easy to compute and invert numerically. This allows us to simulate from the
OU-gamma process without error.
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• IG(δ, γ)-OU process. Then Table 4.1 records that

W+(x) =
δ√
2π
x−1/2 exp

(
−1

2
γ2x

)
.

The focus is often on W−1(y), the value of x which solves y = W+(x) > 0. But, writing
z = γ2x, we have to numerically solve

2πy2

δ2γ2
= r = z−1 exp (−z) .

For large z we have that r ' z−1− 1, suggesting z is approximately, for large r, 1/ (r + 1).
This implies

W−1(y) ' 1

γ2
z ' 1

γ2
1

r + 1
=

δ2

2πy2 + γ2δ2
.

Hence the infinite summation in (4.24) should converge rather slowly and care needs to be
taken with the truncation. In practice we can use a numerical method to improve upon
this approximation with z0 = (r + 1)−1 and then iterating

zi+1 = zi +
r − g(zi)
g′(zi)

, where g(z) = z−1 exp (−z) ,

until convergence. In practice we have to truncate the infinite series. We might do this so
that W−1(y) ≤ 1× 10−10, which equates to y being less than δ105/

√
2π.

Small jump approximation

OLE:ADD SOMETHING ABOUT ROSINSKI AND ASMUSSEN HERE.

4.4.2 Non-negative diffusions

Motivation

Non-negative Ornstein-Uhlenbeck type processes are particularly attractive because of their lin-
earity and Markov nature. This allows us to mathematically study and simulate them relatively
easily. However, many alternative continuous time, Markov, non-negative processes have been
suggested in the literature. Most are based on Brownian motion and have to be non-linear in
order to avoid the process being negative. In general these diffusions can be written as

dτ(t) = µ {τ(t)} dt+ σ {τ(t)} db(t),

where µ(·) and σ(·) are general drift and volatility functions. Constraints have to be placed
on the relative strengths of the drift and volatility so that τ has a reflecting boundary at zero,
otherwise τ can go negative.

WHAT ARE THE CONDITIONS
Here we discuss two cases of these types of process: the Gaussian-OU process for log τ(t)

and the square root process.

Gaussian-OU process for log τ(t)

If we model τ(t) as a Gaussian OU process

dτ(t) = −λ (τ(t)− ξ) dt+ ωdb(λt),
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where b(t) is standard Brownian motion, then there will be a positive probability that τ(t) will
go negative. To avoid this we can model the log of the volatility in this way, producing the
process:

d log τ(t) = −λ
(
log τ(t)− ξlog

)
dt+ ωlogdb(λt). (4.25)

This has a simple solution

log τ(t)|τ(0) ∼ N

{
e−λt log τ(0) + ξlog

(
1− e−λt

)
,
ω2
log

2

(
1− e−2λt

)}
,

which implies τ(t)|τ(0) has a log-normal distribution, while

Cor {log τ(t+ s), log τ(t)} = e−λ|s|.

The properties of the log-normal distribution imply that

E {τ(t)} = exp

(
ξlog +

ω2
log

2

)
, Var

{
σ2(t)

}
= exp

(
2ξlog + ω2

log

){
exp

(
ω2
log

)
− 1

}

and

Cov {τ(t+ s), τ(t)} = Eexp {log τ(t+ s) + log τ(t)} − [E {τ(t)}]2

= exp
(
2ξlog

)
exp

[
ω2
log + ω2

loge
−λ|s|

]
− exp

(
2ξlog + ω2

log

)

= exp
(
2ξlog + ω2

log

) [
exp

{
ω2
loge
−λ|s|

}
− 1

]
.

Hence this process is rather tractable. In particular

Cor {τ(t+ s), τ(t)} =
exp

(
ω2
log

){
exp

(
ω2
loge
−λ|s|

)
− 1

}

{
exp

(
ω2
log

)
− 1

} . (4.26)

Ito calculus implies that τ follows the solution to the SDE

dτ(t) = −λτ(t)
(
log τ(t)− ξlog −

1

2
ω2
log

)
dt+ ωlogτ(t)db(λt),

= −λτ(t) (log τ(t)− ξ) dt+ ωlogτ(t)db(λt).

This shows directly the log-normality effect of the model which shifts the mean of the process
upwards. The term in front of the noise term forces the noise of the diffusion to be damped
when τ becomes small. When τ is large, the process generates large amounts of noise, hence this
process has a great deal of heteroskedasticity. This is in marked contrast with the OU processes
discussed in the previous section.

Square root process

A popular model in financial economics for a stationary, non-negative process is Feller’s square
root process. It is often called the Cox-Ingersoll-Ross (CIR) process after the economists who
popularised it in finance. It takes on the form1

dτ(t) = −λ {τ(t)− ξ} dt+ ω
√
τ(t)db(λt), where ξ, λ, ω > 0. (4.27)

1The time change for the Brownian motion is non-standard in the literature, but it is motivated by our
discussion of the OU process given above.
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Importantly we have to assume that ξ ≥ ω2/2 so there is a reflecting barrier at zero. This model
is particularly attractive for the conditional density of τ(t)|τ(0) is non-central chi-squared. This
follows as it is constructed by squaring a Gaussian OU process. In order to handle this model
is is helpful to recall that the kumulant function of the noncentral χ2-distribution χ2(φ, δ)with
φ degrees of freedom and noncentrality parameter δ, is given by

k(θ) = −1

2
φ log(1 + 2θ)− δθ(1 + 2θ)−1.

If we define ε(t;λ) = λ−1(1− e−λt), then

τ(t)|τ(0) law= ω2

4
λε(t;λ)χ́2,

where χ́2 is a random variable with law

χ2
{
4ξω−2, 4ω−2

(
eλt − 1

)−1}
.

Hence, denoting the conditional cumulants of τ(t) given τ(s) by τ̄m(t|s), m = 1, 2, ..., we have
that

τ̄1(t|0) = e−λtτ(0) + ξλε(t;λ)
τ̄2(t|0) = ω2e−λtε(t;λ)τ(0) + 1

2ξω
2λ2ε(t;λ)2

and for m = 2, 3, ... and t ↓ 0
τ̄m(t|0) = O(tm−1). (4.28)

The fact that τ(t)|τ(0) is non-central chi-squared allows us to write down its conditional
density explicitly as

c exp
[
−c
{
τ(t) + τ(0)e−λt

}]( τ(t)

τ(0)e−λt

)q/2
Iq

{
2c
√
τ(t)τ(0)e−λt

}
(4.29)

where

c =
2

ω2 (1− e−λt) , and q =
2ξ

ω2
− 1,

and Iq(·) is a modified Bessel function of the first kind. As long as λ > 0 this process has a
stationary distribution which is

τ(t) ∼ Γ
(
2ξω−2, 2ω−2

)
, (4.30)

which has a mean of ξ and variance of ξω2/2. Notice that this distribution does not depend
upon λ, a feature which is a result of the use of the time change in (4.27).

The CIR and Γ-OU process have many similiarities. In particular they also share the property
that

Cor {τ(t+ s), τ(t)} = exp (−λ |s|) ,
and so the CIR and Γ-OU process are equivalent up to second order, as well as having the same
marginal distribution. Both the CIR and OU processes have the interesting property that we
can change the persistence of the process by time deformation. In particular suppose τ 1 is a
CIR process with law (4.27) but with λ = 1. We will show in the section on integrated CIR
processes that we can reconstitute a general CIR process τ λ whose law is (4.27) by

τλ(t) = τ1(λt), (4.31)

a simple time change of the more limited CIR process. This is a direct verification that the
marginal distribution of the CIR process does not depend upon λ.

In terms of differences between the two processes, the Γ-OU process has the advantage that
it does not require us to constrain the mean to be bigger than half of the variance in order for
the process to be positive, the CIR process has the virtue that the density of τ(t)|τ(0) is known
analytically rather than by Fourier inversion.
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Constant elasticity of variance process

The CIR process allows the volatility of τ to rise with the level of the process, which is sometimes
empirically important. A more general class of models which allows this, but still yields some
tractability is the constant elasticity of variance (CEV) process. It takes on the form

dτ(t) = −λ {τ(t)− ξ} dt+ ωτ ν(t)db(λt), ν ≥ 1/2,

where ν controls the degrees of responsiveness to the level of the volatility.

Affine models

Simulating non-negative diffusions

One of the virtues of diffusions is that a universal method is available to simulate from them.
Suppose

dy = µ(y)dt+ σ(y)dw,

then the Euler discrete approximation to the diffusion is

yh̄(t+ h̄)− yh̄(t) = µ {yh̄(t)} h̄+ σ {yh̄(t)} {w(t+ h̄)− w(t)} , (4.32)

where, of course, w(t+ h̄)− w(t) ∼ N(0, h̄). Then under some weak assumptions,

yh̄
L−→ y, h̄ ↓ 0,

that is the path of the Euler discretisation converges to in law to the path of the desired con-
tinuous time process as the time interval becomes small. A detailed discussion of the properties
of this Euler scheme is given by Kloeden and Platen (1992).

A major concern for us is that the diffusions we are interested in must obey a non-negativity
constraint. This is obtained by using a reflecting barrier at zero. It is clear from (4.32) that yh̄
does not share this property with probability one. In order to overcome this problem we make
an Euler approximation to the log y transformed process, which is given by Ito calculus as

d logy = y−1dy +
1

2
y−1d[y](t)

= y−1
{
µ(y) +

1

2
σ2(y)

}
dt+ y−1σ(y)dw

= µ∗(y)dt+ σ∗(y)dw.

Then when we exponentiate the resulting sample path, this will obey the non-negativity con-
straint and converge in law to y as h̄ ↓ 0.

4.4.3 Superpositions

Finite superposition

Both OU and diffusion based processes are Markovian. In practice this is often overly restrictive.
One tractable approach to expanding this class of processes is by modelling τ as the sum, or
superposition, of (typically independent) processes each indexed by distinct parameter values.
That is

τ(t) =
m∑

j=1

τ2j (t).
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In the case of a superposition of OU processes, which we write as an OUm process, we would
take

dτ j(t) = −λjτ j(t)dt+ dzj(λjt),

where the {zj(t)} are independent (not necessarily identically distributed) BDLPs. By allowing
the processes to have different persistence rates, we are able to model processes with quickly
decaying short term memory, while allowing for a component of the process to have quite lengthy
dependence. This type of flexibility has proved important in empirical volatility modelling.
When we work with diffusion based models, similar ideas apply. In particular a CIRm model is
based upon

dτ j(t) = −λj
{
τ j(t)− ξj

}
dt+ ωj

√
τ j(t)dbj(λjt),

with the Brownian motions being independent processes. Of course, in principle more sophisti-
cated models can be built in this way, allowing dependence across the individual τ j processes.

In practice it often makes sense to design these superposition models to have particularly
attractive features. An example of this is approach is where

τ j(t) ∼ IG(δj , γ)-OU.

Then we have that marginally

τ(t) ∼ IG(δ+, γ), where δ+ =
m∑

j=1

δj . (4.33)

However, now the overall process is not an OU process. The second-order dynamics of this
process can be expressed as

Cor {τ(t+ s), τ(t)} =
1

Var {τ(t)}
m∑

j=1

Cov {τ j(t+ s), τ j(t)}

=
m∑

j=1

δj
δ+

exp (−λj |s|) , (4.34)

which is a weighted sum of exponential damp downs, where the weights δj/δ+ sum to one. For
simplicity we will call this type of model an IG-OUm process. Similar types of D-OUm and
OUm-D models can be constructed in an obvious manner.

NEIL: REPLACE THIS FIGURE BY THE TRUE ACF OF AN OU$ {2}$ PROCESS AND
A FIT FROM AN OU$ {2}$ AND AN OU$ {1}$ PROCESS.

To illustrate the Γ-OUm process we consider the case where m = 2, and ν+ = 3 and α = 8.5.
This replicates the marginal distribution for an IG-OU process, a sample path of which was
given in Figures ??. However, we take ν1 = 0.8× ν+ and λ1 = 0.2 and λ2 = 0.001. This means
the first component has much more variance than the second, but the second component in
turn has much more memory than the first. The resulting simulated series of length 8, 000 and
corresponding correlogram is given in Figure 4.5. It shows the fast decline in the correlogram
for short lags and the very slow decline at larger lags.

Infinite superposition

Theory In the OU case it is possible to produce a model structure which allowsm, the number
of components to τ , to go off to infinity. This has a number of advantages both from theoretical
and modelling viewpoints. It allows for the possibility of long-memory type effects for the τ
process as well as a new way of parameterising the model.
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Figure 4.5: Γ−OU2 process with ν+ = 3, α = 8.5. Further, ν1 = 0.8 × ν+ and λ1 = 0.2 and
λ2 = 0.001. Left: plot of τ(n) against n. Right: corresponding correlogram.

The rigourous theory of infinite dimensional superpositions is built out of the theory of
random fields of OU processes. This work relies on the Lévy fields z(ds, dξ) we introduced in
Chapter 2. Recall a field of Lévy processes is obtained as

z(t, dξ) =

∫ t

0
dz(s, dξ),

where t represents time. Throughout we repeat our discussion of Chapter 2 where we assumed
the measure for z is independent over s and dξ. As a result for a particular choice of ξ this
produces a single, univariate Lévy process, and these processes are independent across different
ξ.

We can construct a field of OU processes by simply weighting the Lévy increments in a
different manner. In particular we can write

τ(t, dλ) = e−λt
∫ t

−∞
eλsdz(s, dλ),

which is taking the memory parameter of the process as being determined by λ, the index of the
field of Lévy processes. Again, a single choice of λ yields an OU process, while pairs of distinct
values of λ yield independent OU processes whose marginal distributions (but not its dynamics)
will be free of λ.

In the finite superposition model we add together OU processes to produce a richer dynamic.
The extension to the infinite dimensional case replaces summation with integration, working
with independent OU processes with identically distributed BLDPs. Hence the variability in
the processes we integrate will be solely achieved through a random persistence measure λ. The
resulting process is

τ(t) =

∫

R+

e−λt
∫ λt

−∞
esz(ds, dλ). (4.35)

We shall refer to any such process as a supOU . Formal calculations with this process implies
that we can write it as

dτ(t) =

∫

R+

{−λτ(t, dλ)dt+ z(dt, dλ)} , (4.36)

showing that τ is a superposition of OU processes.
Assuming that τ is square integrable, the autocorrelation function r of τ is given by

r(u) =

∫ ∞

0
e−uλν(dλ) = exp

(
K̄{u ‡ λ}

)
(4.37)
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for u ≥ 0 and where for the last conclusion we interpret λ as a random variable with distribution
ν. This is potentially liberating for it means we can model the memory of a linear, non-negative
process through the moment generating function of the memory parameter. Note that the choice
of this moment generating function has no impact on the marginal distribution of τ . If ν is a
distribution made up solely of m atoms then this framework collapses back to the OUm case
discussed in the previous subsection.

Some choices of the moment generating function will deliver models with short term memory,
others will deliver long memory models, however all of the models will have correlations which
are non-negative at all values of u — an important limitation of this class of model.

Example 9 Suppose that ν is the gamma law Γ(2H̄, α) where α, H̄ > 0. Then

r(u) =

(
1 +

u

α

)−2H̄
,

which is monotonically declining with u. The process x exhibits second order long range depen-
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Figure 4.6: Autocorrelation function of sup-OU process with H = 0.1 and α = 0.1. Approxi-
mation of this function using the autocorrelation functions of various OUm processes. Fit is via
least squares. Code: long memory.ox.

dence2 if H̄ ∈
(
0, 12

)
, while larger values of H̄ give short range dependence. Figure 4.6 shows the

autocorrelation function of this type of model in a long memory case with H̄ = 0.1 and α = 1.
This has a characteristic initial fast decline followed by a very slow decay in the function.

Figure 4.6 also displays the non-linear least squares fit of this function by the autocorrelation
functions (4.34) of some OUm processes (which must be short memory processes). In the fitting

2Recall a conventional definition of second order long range dependence is that for large u

r(u) ∝ u2d−1, 0 < d < 0.5.

See, for example, the review by Robinson (1994).
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exercise we allowed the parameters of the OUm model to be freely chosen so as to be proxy
the autocorrelation of the long-memory process. We can see a simple OU1 model is a hopeless
approximation, while OU2 gives quite a reasonable fit. By the time we deliver an OU3 model
the fit of this model is roughly on top of the sup-OU process. This shows how well finite
superpositions of short memory models can fit long-memory models.

Table 4.2 gives the fitted parameters from the above approximation exercise. The important
point is that the OUm models can fit these autocorrelations by have some components which have
small weight (δj/δ+) but very small values of λ. This latter feature allows the autocorrelation
function to decline slowly. The components with large weights have large values of λ, which in
turn allows the autocorrelation function to initially decay very rapidly.

Model δj/δ+ λ

OU1 1.00 .0177
OU2 .337 .662 .00233 .454
OU3 .209 .289 .500 .0553 .00140 1.18

Table 4.2: Parameters which approximates the autocorrelation function of a Γ(0.2, 1) sup-OU
process. The fit is based on a least squares criteria. Code: long memory.ox

4.4.4 Higher order autoregressive models

By rewriting the formula for an AR(1) process xn = xyn−1 + zn in equilibrium correction form

xn − xn−1 = −(1− φ)xn−1 + zn

one naturally passes to the continuous time analogue of an OU process

dx(t) = −λx(t)dt+ dz(t)

Such a procedure does not work for higher order AR(p) models with p > 1 because of the lack
of a proper notion of higher order differentials of a Lévy process. To circumvent this difficulty
one may, for instance, in the AR(2) case rewrite

xn = φ1xn−1 + φ2xn−2 + zn (4.38)

into a bivariate Markov form. This argument is familiar in the statistics literature where it is
used to represent higher order models in state space form. We let cn = xn − xn−1, then

cn − cn−1 = xn − 2xn−1 + xn−2
= −(1− φ1 − φ2)xn−1 − (1 + φ2)cn−1 + zn. (4.39)

The bivariate recursive system

xn − xn−1 = cn,
cn − cn−1 = −(1− φ1 − φ2)xn−1 − (1 + φ2)cn−1 + zn,

(4.40)

has Markov transition equations but allows xn to be marginally a second order autoregressive
process.

The idea is now, in the light of (4.40), to consider the SDE system

dx(t) = c(t)dt
dc(t) = −{λ1x(t) + λ2c(t)} dt+ dz(t),
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with z(t) a Lévy process. According to Brockwell (2001), this bivariate system has a stationary
solution if the two zeroes of the characteristic polynomial z2+λ1z+λ2 both have negative parts
and E{|z(1)|r} <∞ for some r > 0 [A LESSER RESTRICTION ON |z(1)|WOULD SUFFICE,
I SURMISE; WILL THINK ABOUT IT]. The solution for x(t) is then

(
x(t)
c(t)

)
= e−Λt

(
x(0)
c(0)

)
+

∫ t

0
e−Λ(t−s)

(
0
1

)
dz(s) (4.41)

where

Λ =

(
0 −1
λ2 λ1

)
.

Furthermore,

C{ζ ‡ x(t)} =
∫ ∞

0
C{ζ(0, 1)e−Λs

(
0
1

)
‡ z(1)}ds.

The above discussion generalises to allow moving average type effects to enter this model
structure. Such models are call continuous time autoregressive moving average (CARMA) pro-
cesses.

4.4.5 General linear models

It is sometimes useful to consider the general case of a linear model, where

τ(t) =

∫ t

−∞
f(t− s)dz(s),

where f is a deterministic function. Clearly the OU process is recovered from this setup by
writing f(u) = exp(−λ |u|). However, the general model structure is itself quite tractable. In
particular

E (τ(t)) = κ1

∫ t

−∞
f(t− s)ds and Var (τ(t)) = κ2

∫ t

−∞

∫ t

−∞
f(t− s)f(t− u)dsdu.

4.5 Integrated non-negative processes

4.5.1 General case under covariance stationarity

In this section we will study the properties of chronometers built by integrating a stationary,
non-negative process τ . In particular we will write

τ∗(t) =
∫ t

0
τ(u)du. (4.42)

Leading cases will be where τ is an OU or diffusion process, or superposition of such models. In
all such models, by construction of being an integrated process,

∂τ∗(t)
∂t

= τ(t). (4.43)

It is possible to derive some properties for the above integrated processes. We suppose τ is a
covariance stationary process with (when they exist) ξ, ω2 and r being, respectively, the mean,
variance and the autocorrelation function of the process τ . Then

E {τ∗(t)} = ξt, and Var{τ ∗(t)} = 2ω2r∗∗(t) (4.44)
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where

r∗(t) =
∫ t

0
r(u)du and r∗∗(t) =

∫ t

0
r∗(u)du. (4.45)

The first result is straightforward, while the second one is to due to the manipulation

Var{τ ∗(t)} =

∫ t

0

∫ t

0
Cov{τ(u), τ(v)}dudv

= ω2
∫ t

0

∫ t

0
Cor{τ(u), τ(v)}dudv

= ω2
∫ t

0

∫ t

0
r(u− v)dudv

= 2ω2
∫ t

0

∫ v

0
r(u)dudv

= 2ω2
∫ t

0
r∗(v)dv

= 2ω2r∗∗(t).

A plot of Var{τ ∗(t)} against t is called a variogram. It will also be helpful to calculate

Cov{τ∗(t), τ∗(t+ s)} = ω2
∫ t

0

∫ t+s

0
r(u− v)dudv

= ω2
∫ t

0
r∗(t+ s− v)− r∗(−v)dv

= ω2 [{r∗∗(t+ s)− r∗∗(s)} − {−r∗∗(t)− r∗∗(0)}]
= ω2 [r∗∗(t+ s) + r∗∗(t)− r∗∗(s)] .

Further we have that if τ(u) is ergodic then, as t→∞,

t−1τ∗(t) = t−1
∫ t

0
τ(u)du

a.s.→ ξ.

Hence a scaled version of the integrated process converges to its expected value ξ as t increases.

Example 10 Suppose r(u) = exp(−λ |u|), implying

r∗(t) = λ−1
(
1− e−λt

)
(4.46)

and which means that
r∗∗(t) = λ−2

(
e−λt − 1 + λt

)
. (4.47)

Important observations are that r(s) exponentially damps down to zero, always being less than
one. On the other hand r∗(s) starts at zero and monotonically rises to λ−1 as s increases.
Finally, r∗∗(s) again starts at zero but trends upwards, never settling at an asymptote. The
implications of these results is that

E {τ∗(t)} = ξt, and Var{τ ∗(t)} = 2ω2

λ2

(
e−λt − 1 + λt

)
.

For small t it is sometimes helpful to think of Var{τ ∗(t)} as being approximated by ω2t2+ o(t2),
while for large t

Var{τ ∗(t)} ≈ 2ω2

λ
t.
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Hence over small intervals the standard deviation of τ ∗(t) is of the same order as the mean,
while for large t the mean dominates. Further,

τ∗(t)
a.s.→
λ→∞

ξt,

that is as the reversion parameter increases the integrated process converges to its expected path.

Example 11 Suppose we parameterise the autocorrelation function through a distribution. In
particular we write

r(u) =

∫ ∞

0
e−uλν(dλ),

where v is a measure on λ and

r∗(t) =
∫ ∞

0

1

λ

(
1− e−tλ

)
ν(dλ)

and

r∗∗(t) =
∫ ∞

0
λ−2

(
e−λt − 1 + λt

)
ν(dλ).

If ν is the form of a GIG distribution then r∗∗(t) can be computed analytically due to the form
of the GIG density. This provides a flexible three parameter model for r. In the special case
where v corresponds to a Γ(2H̄, α) then

r(u) =

(
1 +

u

α

)−2H̄
,

while writing b = 2H̄ and setting α = 1 we find that for b < 1 (which deliver long-memory
models)

r∗(t) = (1− b)−1
{
(1 + t)1−b − 1

}

and
r∗∗(t) = (1− b)−1

[
(2− b)−1

{
(1 + t)2−b − 1

}
− t
]
.

Example 12 Gaussian OU process of log τ(t). In the previous Chapter we studied the Gaussian
OU process for log τ(t) given in (4.25). The unconditional mean and variance of the log process
is ξlog and ω2

log, respectively. Thus

E {τ∗(t)} = exp

{
tξlog +

1

2
tω2

log

}
.

We showed in (4.26) that, for τ(t), writing rlog(s) = exp(−λ |s|) as the autocorrelation function
of log τ(t),

{
exp

(
ω2
log

)
− 1

}

exp
(
ω2
log

) r(s) = exp
{
ω2
loge
−λs

}
− 1

=
∞∑

j=1

(
ω2
log

)j

j!
rlog(js).

Note that this autocorrelation function is the same as would result from a sup-OU process (4.37)
for a particular choice of v. We can note that

∫ t

0
exp(−jλs)ds =

1

j

∫ tj

0
exp(−λu)du, u = js

=
1

j
r∗log(jt),
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as a result, recalling r∗∗log(s) = λ−2
(
e−λs − 1 + λs

)
,

{
exp

(
ω2
log

)
− 1

}

exp
(
ω2
log

) r∗∗τ (s) =
∞∑

j=1

(
ω2
log

)j

j!j2
r∗∗log(js).

4.5.2 Increments of integrated non-negative processes

It is possible to use the above results to study the dynamics of equally spaced increments of the
integrated process. Let us write, for some interval h̄ > 0,

τn =

∫ nh̄

(n−1)h̄
τ(u)du = τ ∗(nh̄)− τ ∗((n− 1) h̄).

If τ is stationary, then these increments are also stationary. Then (6.94) implies immediately
that

E (τn) = ξh̄, and Var (τn)} = 2ω2r∗∗(h̄). (4.48)

We can also deduce the autocorrelation function of the discrete time process τ n, for

Cov(τn, τn+s) =

∫ nh̄

(n−1)h̄

∫ (n+s)h̄

(n+s−1)h̄
Cov{τ(u), τ(v)}dudv

= ω2
∫ nh̄

(n−1)h̄

∫ (n+s)h̄

(n+s−1)h̄
r(v − u)dudv

= ω2
∫ h̄

0

∫ (s+1)h̄

sh̄
r(v − u)dudv

= ω2
∫ h̄

0
{r∗((s+ 1)h̄− u)− r∗(sh̄− u)}du

= ω2♦r∗∗(h̄s) (4.49)

where
♦r∗∗(h̄s) = r∗∗((s+ 1) h̄)− 2r∗∗(h̄s) + r∗∗((s− 1) h̄). (4.50)

Here the notation ♦ is like a second order difference operator (that is (1− L)2 r∗∗(s+ 1) where
L is the lag operator) in time series analysis. From this result we have that

Cor(τn, τn+s) =
♦r∗∗(h̄s)
2r∗∗(h̄)

, s = 1, 2, ... , (4.51)

which only depends upon the autocorrelation function of τ . In particular all models for which
we can compute r∗∗ allows us to calculate the autocorrelation function of the increments of the
processes. Here we discuss in detail just a single example of this to illustrate its structure.

Example 13 Suppose r(u) = exp(−λ |u|), then

♦r∗∗(h̄s) = λ−2(1− e−λh̄)2e−λh̄(s−1),

which implies

Cor(τn, τn+s) =
(1− e−λh̄)2

2 (e−λh̄ − 1 + λh̄)
e−λh̄(s−1) = ce−λh̄(s−1), s = 1, 2, ... .

This has an exponential damp down, so behaves liked the autocorrelation function of an ARMA(1, 1)
process with a positive autoregressive root (e−λh̄) and a moving average root also determined by
λh̄ (i.e. there is only a single parameter which determines both the autoregressive and moving
average parameter). Of course for h̄ small c ' 1 ' e−λh̄ and so the process is close to having
the autocorrelation function of an AR(1) process.

95



4.5.3 intOU processes

Basics

In this subsection we will study the detailed properties of integrated processes based upon the
OU processes of the form

dτ(t) = −λτ(t)dt+ dz(λt),

for λ > 0. These processes are labelled intOU processes. If we model τ(t) as a D-OU process
then we say τ ∗(t) is an intD-OU process, while an OU-D process delivers an intOU-D process
for τ∗(t).

Although the OU process τ(t) has jumps, due to the jumps in the Lévy process z(λt), it still
holds that ∂τ ∗(t)/∂t = τ(t). A major advantage of the OU processes is that

τ∗(t) = λ−1{z(λt)− τ(t) + τ(0)} (4.52)

τhas a simple structure — a result which is proved in the Appendix. Hence τ ∗(t) has continuous
sample paths because z(λt) and τ(t) co-break (that is where components of a multivariate series
exhibit breaks but a linear combination of that series does not). Figure 4.7 shows this feature
for a Γ-OU process, that is a process with a gamma distributed marginal law Γ(ν, α). For the
simulated process we plot τ ∗(t) and z(tλ) against t. The intOU process has no jumps, although
the gradient of the process clearly changes over time. The BDLP has its familiar upward jumps.
Further, τ ∗(t) has a lower bound made up of λ−1(1− e−λt)τ(0).
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Figure 4.7: Γ−OU process with ν = 3, α = 8.5. Left: plot of x∗(t) against t . Right: plot of
z(λt), the BDLP, against t .

The fact that z(λt) and τ(t) co-break has deep implications for the use of this model. We
can then use it as a chronometer of Brownian motion with drift, implying the resulting process
y∗(t) has continuous sample paths. This contrasts with the usual case of subordination in the
probability literature where the Brownian motion plus drift is subordinated by a Lévy process,
z(t). In that case the resulting y∗(t) process must have jumps. Examples of such processes
are the normal gamma, normal inverse Gaussian and hyperbolic Lévy processes discussed in
Chapter 2.

Although z(λt) and τ(t) co-break, they do not co-integrate (that is where linear combinations
of a non-stationary multivariate system are stationary). Instead, the long-run behaviour of τ ∗(t)
is dominated by z(λt). This is clear from rewriting (4.52) as

λτ∗(t)− z(λt) = τ(0)− τ(t),
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which means τ ∗(t) and z(λt) (rather than τ(t) and z(λt)) co-integrate. So roughly λx∗(t) will
have the same distribution as z(λt) — the error in this approximation is a stationary process.
The distribution of the error, for large t and τ(t) being a D-OU process, is approximately the
difference of two independent random variables drawn from the distribution D.

Prediction distributions for intOU processes

The attractive feature of (4.52) is that the density of the future intOU process τ ∗(t)|τ(0) is
determined by just z(λt)− τ(t)|τ(0). As both z(λt) and τ(t) are linear we can see that this will
be mathematically tractable. In particular

τ∗(t) = λ−1(1− e−λt)τ(0) + λ−1
∫ t

0

{
1− e−λ(t−s)

}
dz(λs)

implies we have only to study the stochastic properties of the innovations for the intOU process

λ−1
∫ t

0

{
1− e−λ(t−s)

}
dz(λs) =

∫ t

0
ε(t− s;λ)dz(λs) (4.53)

where
ε(t;λ) = λ−1(1− e−λt). (4.54)

and so

λ−1
∫ t

0

{
1− e−λ(t−s)

}
dz(λs)

L
= λ−1

∫ λt

0

{
1− e−s

}
dz(s).

In this section we will show how to simulate from this object and also how to compute its
cumulants.

The first two moments of τ ∗(t)|τ(0) can be calculated. We start by working out the mean
and variance of this term, before going on to derive the cumulant function. Recalling we wrote
the first two cumulants of z(1) as κ1 (which also equals E(τ(t)) and κ2 (which equals 2Var(τ(t)),
then

E

{
λ−1

∫ λt

0

(
1− e−s

)
dz(s)

}
= λ−1κ1

∫ λt

0

(
1− e−s

)
ds

= λ−1κ1
(
λt− 1 + e−λt

)
.

The implication is that

E {τ∗(t)|τ(0)} = λ−1(1− e−λt)τ(0) + λ−1κ1
(
λt− 1 + e−λt

)
. (4.55)

The corresponding result for the conditional variance is

Var {τ ∗(t)|τ(0)} = λ−2κ2

∫ λt

0
(1− e−s)2ds

= λ−2κ2

(
λt− 2 + 2e−λt +

1

2
− 1

2
e−2λt

)
. (4.56)

One of the main advantages of basing the model on an OU process is that we are able to
derive the conditional cumulant function of the intOU process. In the next chapter we establish
the result that

K {θ ‡ τ∗(t)|τ(0)} = −θε(t;λ)τ(0) + λ

∫ t

0
k(θε(s;λ))ds

= −θε(t;λ)τ(0) +
∫ 1−e−λt

0
(1− u)−1k(λ−1θu)du, (4.57)
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recalling that k(θ) = log E [exp {−θz(1)}]. We have derived some examples of this. These results
will prove to be very helpful when it comes to option pricing later on in this book. Hence our
list of examples is rather extensive.

• OU-Poisson. This shot noise process has k(θ) = −ψ
(
1− e−θ

)
and so we have to integrate

∫ 1−e−λt

0
(1− u)−1k(λ−1θu)du = −ψ

∫ 1−e−λt

0
(1− u)−1 {1− exp (−χθu)} du,

where χ = λ−1θ. Now
∫
(1− u)−1 exp (−χu) du = e−χE1 {χ− χu} ,

where E1(x) is the exponential integral
∫∞
χ y−1e−ydy.

• OU-Γ. This has k(θ) = −ν log(1 + θα−1). Then
∫ 1−e−λt

0
(1− u)−1k(λ−1θu)du = −ν

∫ 1−e−λt

0
(1− u)−1 log(1 + χu)du,

where χ = λ−1θα−1. Now
∫

log(1 + χu)

(1− u) du = − log (1 + χu) log

(
1− 1 + χu

1 + χ

)
− PolyLog

(
2,

1 + χu

1 + χ

)
,

where PolyLog(n, z) =
∑∞
k=1 z

k/kn.

• OU-IG. This has k(θ) = h̄γ − h̄γ(1 + 2γ−2θ)1/2. Then
∫ 1−e−λt

0
(1− u)−1k(λ−1θu)du = h̄γ

∫ 1−e−λt

0

1− (1 + χu)1/2

1− u du

= −h̄γ {I(χ, t)− λt} ,
where χ = 2γ−2λ−1θ and

I(χ, t) =

∫ 1−e−λt

0

√
1 + χu

1− u du

= λt
√
1 + χ+ 2

{[
1− b(χ) +

√
1 + χ log

{√1 + χ+ b(χ)}
{√1 + χ+ 1}

]}
.

Here b(χ) =
√
1 + χ− χe−λt.

• IG-OU. This has ḱ(θ) = h̄γ − h̄γ
(
1 + 2θγ−2

)1/2
and so (??) states that

k(θ) = −θh̄
γ

(
1 + 2θγ−2

)−1/2
.

Then
∫ 1−e−λt

0
(1− u)−1k(λ−1θu)du = − h̄θ

γλ

∫ 1−e−λt

0
(1− u)−1u (1 + χu)−1/2 du, (4.58)

where χ = 2γ−2λ−1θ. Now

∫
(1− u)−1u (1 + χu)−1/2 du = −2

√
1 + χu

χ
+

2arctanh
{√

1+χu√
1+χ

}

√
1 + χ

.

We will return to these types of results in a later chapter.
In a recent paper Lewis (2000) has calculated the moments of τ ∗(t)|τ(0) for a CIR process.

We will report those results here.
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Unconditional distributions for intOU processes

Cumulant function of τ ∗(t) can be derived straightforwardly from the conditional cumulant
function given in (4.57). The result is

K {θ ‡ τ∗(t)} = ḱ {θε(t;λ)}+ λ

∫ t

0
k {θε(s;λ)} ds

= ḱ {θε(t;λ)}+
∫ 1−e−λt

0
(1− u)−1k(λ−1θu)du, (4.59)

recalling that ε(t;λ) = λ−1(1− e−λt). To be concrete it is helpful to think of an example.

• IG-OU process has ḱ(θ) = h̄γ− h̄γ
(
1 + 2θγ−2

)1/2
, while the required integral given in (??)

is solved in (4.58). Hence in principle the law of τ ∗(t) can be found by simply inverting
the cumulant function to give the corresponding density or distribution function.

More generally, all of the cases dealt with in the previous section on conditional cumulant
functions carry over to the unconditional one.

Conditional simulation

In this subsection we will give methods for simulating from the innovations (4.53). We do this
for (i) compound processes, (ii) general processes using infinite series approximation. In the
compound process we can write the innovations as equal to

λ−1
∫ λt

0

(
1− e−s

)
dz(s)

= λ−1
N(λt)∑

j=1

(
1− e−λt+aj

)
cj ,

where N(t) ∼ Po(ψt), {aj} are the arrival times of a Poisson process with intensity ψ and the
{cj} are the shocks in the compound Poisson process. In the infinite series approximation we
write

λ−1
∫ λt

0

(
1− e−s

)
dz(s)

L
= λ−1

∞∑

i=1

W−1(ai/λt) {1− exp(−λtri)} ,

where {ri} are independent uniforms.

Asymptotic cumulant as λ ↓ 0

One way of trying to get an analytic understanding of the behaviour of the intOU process is to
think about the process as λ ↓ 0, recalling we have already shown that

τ∗(t)
a.s.→
λ→∞

ξt.

Here we see that
lim
λ↓0

K {θ ‡ τ∗(t)} = ḱ (θt) .

Of course this simplification is much easier to manipulate.
Example 3.2 OU-IG case. Then

k∗(θ, t, 0) =

∫ t

0

{
h̄γ − h̄γ(1 + 2γ−2θ)1/2

}
u−1du

= 2h̄θ

∫ t

0

{
h̄γ + h̄γ(1 + 2γ−2θ)1/2

}−1
du.
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4.5.4 Integrated diffusion based models

intCIR processes

The square root model

dτ(t) = −λ {τ(t)− ξ} dt+ ω
√
τ(t)db(λt),

is analytically quite similiar to the Γ-OU process. Its has the direct solution

τ(t) = τ(0) + λξt− λτ ∗(t) + ω

∫ t

0

√
τ(u)db(λu).

Rearranging we have that

τ∗(t) = ξt+ λ−1
{
ω

∫ t

0

√
τ(u)db(λu)− τ(t) + τ(0)

}
,

which has many similiarities to the OU case (4.52). In particular the important predictive role
of

ω

∫ t

0

√
τ(u)db(λu)− τ(t)

becomes clear.
Importantly

E {τ∗(t)|τ(0)} = ξt+ λ−1 [τ(0)− E {τ(t)|τ(0)}]
= ξt+ ε(t;λ) [τ(0)− ξ] .

A complete characterisation of the conditional distribution is available from the cumulant func-
tion, which has a simple affine structure

C{ζ ‡ τ∗(t)|τ(0)} = B(ζ; t)τ(0) +A(ζ; t)

where

A(ζ; t) = ω−2ξ
{
λt+ 2 log(cosh

γt

2
+
λ

γ
sinh

γt

2
)

}

B(ζ; t) =
2iζ

λ+ γ coth γt
2

with γ given by

γ =
√
λ2 − 2ω2iζ.

OLE: DISCUSS THE DERIVATION OF THIS.
Results on Lewis on moments??. Also add Ole’s results.

Affine models

4.5.5 Superposition of integrated non-negative processes

In the previous Section we increased the scope of the dynamics of our models by superposition
of non-negative processes. Here we do the same for integrated processes. Suppose that

τ(t) =
m∑

j=1

τ j(t),
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where the τ j(t) are independent non-negative, stationary processes. Then

τ∗(t) =

∫ t

0
τ(u)du

=
m∑

j=1

τ∗j (t),

implying the integrated superposition of non-negative processes is equal to a superposition of
integrated non-negative processes.

In the superposition case we can calculate the cumulant function of the prediction distribu-
tion

τ∗(t)|τ1(0), ..., τm(0),
when we assume the components τ j are Markov case — as would hold in the OU and diffusion
cases. To be specific, in those cases

K {θ ‡ τ∗(t)} =
m∑

j=1

K
{
θ ‡ τ∗j (t)|τ j(0)

}
.

An important feature of the above analysis is that they are calculated by conditioning on m
initial values, rather than on τ(0). This is because τ is not Markovian, while the τ j are assumed
to be so.

Corresponding results carry over to the increments of the process. They are again defined
as

τn = τ∗(nh̄)− τ ∗((n− 1) h̄)

=

∫ nh̄

(n−1)h̄
τ(u)du

=
m∑

j=1

τ j,n,

where
τ j,n = τ∗j (nh̄)− τ ∗j ((n− 1) h̄).

Example 14 Suppose τ ∗j (t) has mean, variance and autocorrelation function denoted by ξj, ω
2
j

and rj(u) = exp(−λj |u|), respectively. Then E {τn} = ξ+h̄ and Var {τn} = 2
∑m
j=1 ω

2
jr
∗∗
j (h̄),

while implies

Var {τn} = 2
n∑

j=1

ω2
jλ
−2
j

(
e−λj h̄ − 1 + λj h̄

)
.

Likewise

Cov(τn, τn+s) =
m∑

j=1

ω2
j♦r∗∗j (h̄s)

=
m∑

j=1

ω2
jλ
−2
j (1− e−λj h̄)2e−λj h̄(s−1).

This implies

Cor(τn, τn+s) =
m∑

j=1

cje
−λj h̄(s−1), where cj =

ω2
jλ
−2
j (1− e−λj h̄)2
Var {τn}

.

Each of the weights {cj} are non-negative. Of course for small h̄,

λ−2j (1− e−λj h̄)2 ' h̄2 and 2λ−2i
{
e−λih̄ − 1 + λih̄

}
' h̄2,

which implies cj ' h̄j/h̄+, which sum to one.
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4.6 Conclusion

4.7 Appendix

4.7.1 Conditions for the existence of an OU process

We are concerned with integrals of the form

x(t) =

∫ t

0
e−sdz(s).

Let us consider this for the special case where z is a subordinator, that is a Lévy process with
non-negative increments. Then we may take the integral as being determined pathwise. The
process x is clearly nonnegative and increasing and hence a chronometor. We write

x (∞) =

∫ ∞

0
e−sdz(s) = lim

t↑∞
x(t).

Under a mild condition on z, x (∞) will be finite almost surely, that is it will be a random
variable, and since each x(t) is infinitely divisible the same will then hold for x (∞). To determine
the relevant conditions under which this holds we consider the kumulant function of x(t) which,
by (2.14), is

K{θ ‡ x(t)} = −
∫ t

0

∫ ∞

0
{1− exp(−e−sθx)}W (dx)ds.

Using the substitutions y = e−sx and r = es may rewrite this as

K{θ ‡ x(t)} = −
∫ t

0

∫ ∞

1
{1− exp(−θy)}W (esdy)ds

= −
∫ ∞

1

∫ et

1
{1− exp(−θy)}W (rdy)r−1dr

= −
∫ ∞

1
{1− exp(−θy)}U(t)(dy),

where

U(t)(dy) =

∫ et

1
W (rdy)r−1dr,

is the Lévy measure of x(t). Now suppose for simplicity that the Lévy measure W is absolutely
continuous with a density w. Then the U(t) is also absolutely continuous, with density

U(t)(y) =

∫ et

1
w(ry)dr = y−1

∫ ety

y
w(x)dx

and for t→∞
U(t)(y)→ u(y) = y−1W+(y).

For x (∞) to be a random variable this limiting function u should be a Lévy density, i.e. it
should satisfy the integrability condition (2.15). Noting first that

W+(y) =

∫ ∞

y
w(x)dx = y

∫ ∞

1
w(yτ)dτ

we find

102



∫ ∞

0+
min {1, x}u(x)dx =

∫ ∞

1

∫ ∞

0+
min {1, x}w(xτ)dxdτ

=

∫ ∞

1

∫ ∞

0+
min

{
1, τ−1y

}
τ−1w(y)dydτ

=

∫ ∞

0+

∫ ∞

1
min

{
1, τ−1y

}
τ−1dτw(y)dy

=

∫ ∞

1
τ−2dτ

∫ 1

0+
yw(y)dy +

∫ ∞

1

(∫ y

1
τ−1dτ + y

∫ ∞

y
τ−2dτ

)
w(y)dy

=
1

2

∫ 1

0+
yw(dy) +

∫ ∞

1
log yw(y)dy +

1

2

∫ ∞

1
w(y)dy.

In the latter expression the first and third integrals are finite since W is a Lévy measure. We
are thus led to the condition ∫ ∞

1
log (y) w(y)dy <∞,

for finitenes almost surely of x (∞).

4.8 Exercises

4.9 Appropriate literature

4.9.1 Time deformation

4.9.2 OU type processes

Autoregressions are one of the most common models used in modern time series, textbook
expositions include Brockwell and Davis (1987) and Hamilton (1994). Equilibrium correction
models were introduced by Sargen (1964) and were are highlighted by Hendry (1995a), which
discusses his pioneering work on the topic as well as discussing in detail the contributions of
others. Gaussian OU processes were introduced by Uhlenbeck and Ornstein (1930).

Non-Gaussian OU processes have been discussed in the probability literature for quite some
time with precise statements of existence given in cf. Wolfe (1982) and Jurek and Vervaat
(1983) (see also Barndorff-Nielsen, Jensen, and Sørensen (1998)). The model has been used in,
for example, storage theory by, for example, Cinlar and Pinsky (1972), Harrison and Resnick
(1976) and Brockwell, Resnick, and Tweedie (1982). Extensions to the ARMA case are discussed
by Brockwell (2001). GIG distributions were shown to be self-decomposable, and so support OU
processes, by Halgreen (1979). A wide development of these types of model, in detail, is given
in Barndorff-Nielsen and Shephard (2001a). These authors introduced the notation OU-D and
D-OU.

The simulation of stochastic integrals based on Lévy processes is not straightforward due
to the jump character of the processes. We use infinite series representations of these types
of integrals. The required results are, in essence, available from work of Marcus (1987) and
Rosinski (1991). A self-contained exposition of this result is given in Barndorff-Nielsen and
Shephard (2001b), while recent developments are surveyed in ?); see also Protter and Talay
(1999), Ferguson and Klass (1972), Vervaat (1979) and Walker and Damien (2000).

The idea of incresding the flexibility of the dynamics by using superpositions is very old
going back to ?. Granger (1980) and Cox (1991) use this construction, for real valued discrete
time processes, to build long-memory processes. A formal theory of an infinite dimensional
superposition was developed for non-Gaussian OU processes by Barndorff-Nielsen (2001).
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4.9.3 Integrated processes

The idea of integrated processes appears in the work of Box and Jenkins (1970), while cointe-
gration was introduced by Clive Granger in the early 1980s. An elegant framing of these ideas
is given in Engle and Granger (1987). Co-breaking was introduced by Hendry (1995b) and
eventually published in Clements and Hendry (1999, Ch. 9).

Barndorff-Nielsen and Shephard (2002b) have studied in detail the properties of intOU pro-
cess. Their analysis covers both non-negative processes as well as processes on the real line.
The conditional cumulant function for σ2∗(t)|τ(0) has been derived for many different types of
D-OU and OU-D processes by ?) and Tompkins and Hubalek (2000). We have given a selection
of results above.

Carr, Geman, Madan, and Yor (2001) gave the expression for the cumulant function for an
integrated CIR process. Lewis (2000) has derived all the moments of a CIR process. Variograms
play a large role in spatial statistics, see for example Cressie (1993). They have been highlighted
recently in transaction level econometrics in some work by Hillman and Salmon (1999) and also
appear in Rydberg and Shephard (2000).
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Chapter 5

Stochastic volatility
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Abstract: In this Chapter we analyse stochastic volatility models, that is time deformation
models with differentiable chronometers. Such models are the bedrock of much of modern
financial econometrics. Here we discuss the basic properties of these models, leverage effects
and estimation and testing strategies for these models.

5.1 What is this Chapter about?

•

•

•

•

•

•

•

5.2 Univariate stochastic volatility

Recall that in Chapter 2 we introduced the idea of subordination, where we took a Brownian
motion b and replaced its’ clock by a chronometer. This was a positive stochastic process
τ(t) which was monotonically increasing and tending to infinity for t tending to infinity and is
independent of the Brownian motion b. The resulting process is b {τ(t)}. A simple case of this
is where τ(t) is a Lévy process with non-negative increments, which we called a subordinator in
Chapter 2.

Now consider models of the type

y∗(t) =
∫ t

0
σ(s)dw(s), (5.1)

where the processes σ and w are independent, w being a Brownian motion and σ being positive
and predictable and such that σ2∗(t) → ∞ for t → ∞. It turns out that, in essence, there is
equivalence between the model formulation by (5.1) and the model formulation by subordination
with an independent chronometer σ2∗ when this chronometer has continuous sample paths. This
result is proved formally in Chapter ?. This result does not hold when the chronometer is a
subordinator such as a compound Poisson process or a inverse Gaussian process, for then it
has discontinuous paths. Hence Brownian motions subordinated by Lévy processes are not SV
processes.

Our integration based chronometers have the feature that log-prices have continuous sample
paths and that increments obey the law

yn|τn ∼ N(µh̄+ βτn, τn), n = 1, 2, 3, ...

where again h̄ > 0 and

yn = y∗ (h̄n)− y∗ ((n− 1) h̄) and τn = τ∗ (h̄n)− τ ∗ ((n− 1) h̄) .

Hence returns yn will inherit serial dependence via the serial dependence in τn, the increments
to the chronometer.
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In this Chapter we will study some of the generic properties of these chronometers, however
our main focus will be on models for which we are able to show that (i) they have empirically
desirable properties such that {τn} is serial correlated with thick tails, (ii) are mathemati-
cally tractable so that we can calculate the cumulant functions of τ n and its predictive version
τn|τ {(n− 1) h̄}. We will pay particular attention to non-negative Ornstein-Uhlenbeck (OU)
processes which solve the stochastic differential equation (SDE)

dτ(t) = −λτ(t)dt+ dz(λt), λ > 0,

where z is a subordinator, whose non-negative increments keep τ from going negative. Hence
Lévy processes will again play an important role in our work, however now they appear twice
removed, as the process which drives the chronometer which changes the clock of the Brownian
motion. We will also discuss the common alternative to this approach which is to use non-linear
processes driven by a second Brownian motion b, which is assumed to be independent from w.
An example of this is Feller’s square root (also called the Cox-Ingersoll-Ross or CIR) process

dτ(t) = −λ {τ(t)− ξ} dt+ ωτ 1/2(t)db(λt), where ξ ≥ ω2/2 > 0, λ > 0. (5.2)

This has a reflecting boundary at zero, and so can be used as the basis for a chronometer.
This Chapter has ? section. In Section 2 we will introduce non-negative OU processes, while

Section 3 will study superposition of such models (the addition of independent copies of OU
processes) which allow us to build long-memory models for the increments to the chronometer.
Section 4 will look at diffusion based alternatives to these models. Section 5 will be devoted
to the properties of chronometers based on integrating the above stationary processes. Section
6 will draw some conclusions from this Chapter, while Section 7 will discuss the corresponding
literature on these topics. Finally the Appendix will contain various technical results we need
in this Chapter.

5.2.1 Basic model

Continuous time models built out of Brownian motion play a crucial role in modern finance,
providing the basis of most option pricing, asset allocation and term structure theory currently
being used. An example is the so called Black-Scholes or Samuelson model which models the
log of an asset price by the solution to the stochastic differential equation

dy∗(t) = {µ+ βτ} dt+ σdw(t), (5.3)

where w(t) is standard Brownian motion. This means aggregate returns over intervals of length
h̄ > 0, are

yn =

∫ nh̄

(n−1)h̄
dy∗(t) = y∗(nh̄)− y∗ {(n− 1) h̄}

implying returns are normal and independently distributed with a mean of µh̄ + βτh̄ and a
variance of h̄τ . Unfortunately we have already seen that for moderate to small values of h̄
(corresponding to returns measured over 5 minute to one day intervals) returns are typically
heavy-tailed, exhibit volatility clustering (in particular the |yn| are correlated) and are skew,
although for higher values of h̄ a central limit theorem seems to hold and so Gaussianity becomes
a less poor assumption for {yn} in that case. This means that every single assumption underlying
the Black-Scholes model is routinely rejected by the type of data usually used in practice.

This common observation, which carries over to the empirical rejection of option pricing
models based on this model, has resulted in an enormous effort to develop empirically more
reasonable models which can be integrated into finance theory. The most successful of these
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are the generalised autoregressive conditional heteroskedastic (GARCH) and the diffusion based
stochastic volatility (SV) processes.

Our model will also be of an SV type, based on a more general stochastic differential equation,

dy∗(t) = {µ+ βτ(t)} dt+ σ(t)dw(t), (5.4)

where τ(t), the instantaneous volatility, is going to be assumed to be stationary, latent and
stochastically independent of w(t). Typically we will assume τ(t) is of OU type

dτ(t) = −λτ(t)dt+ dz(λt),

where z(t) is a Lévy process with non-negative increments, or a superposition of such processes

τ(t) =
m∑

j=1

σ2j (t), where dσ2j (t) = −λjσ2j (t)dt+ dzj(λjt),

where the {zj(t)} are independent (not necessarily identically distributed) BDLPs. However, as
we noted in Chapter 5, there are alternative diffusion based alternatives which are commonly
used in the literature. In particular, the square root process

dτ(t) = −λ {τ(t)− ξ} dt+ ω
√
τ(t)db(λt),

and the Gaussian OU process for log τ(t)

d log τ(t) = −λ
(
log τ(t)− ξlog

)
dt+ ωlogdb(λt)

have both been frequently used in this context. Here b(t) is standard Brownian motion.
Even if τ(t) exhibits jumps, as it does in the OU case, y∗(t) is a continuous process for all

parameter values — a very important result which will be explained more in the next section.
This formulation also makes it clear that in the special case where µ = β = 0 an SV process can
be thought of as a subordinated Brownian motion were the chronometer is integrated volatility

∫ t

0
τ(u)du.

We will delay our discussion of this well known connection also until the next section.
We saw in (6.94) that we can write the first two moments of σ2∗(t) in terms of the mean,

variance and the autocorrelation function of the process τ(t). Recall, we write these as ξ, ω2

and r, respectively. The implication is that

E {y∗(t)} = (µ+ βξ) t and Var{y∗(t)} = 2β2ω2r∗∗(t) + tξ,

recalling that r∗∗(t) =
∫ t
0

∫ u
0 r(s)dsdu. Further, when β = 0,

κ3{y∗(t)} = 0 and κ4{y∗(t)} = 6ω2r∗∗(t).

Finally

Var(y∗(t)2) = κ4{y∗(t)}+ 2Var{y∗(t)}
= 6ω2r∗∗(t) + 2tξ.

Statistically Var{y∗(t)} is particularly important, for a plot of it against t is called a variogram.
It is worth noting an example of the variogram.
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• Suppose r(s) = exp(−λu), which is the autocorrelation function of τ(t) for all OU and

CIR processes (assuming r exists). Then r∗∗(t) = λ−2
(
e−λt − 1 + λt

)
implying

Var{y∗(t)} = 2β2ω2

λ2

(
e−λt − 1 + λt

)
+ tξ,

while when β = 0 the standardised fourth cumulant is

κ4{y∗(t)}
Var{y∗(t)}2 =

6ω2

λ2t2ξ2

(
e−λt − 1 + λt

)

'
{

3ω2ξ−2, for small t
0 for large t

.

Hence for small t this is determined by the coefficient of variation of τ(t), with larger coef-
ficients leading to higher fourth cumulants. For large t the standardised fourth cumulant
converges to zero from above, suggesting a standardised version of y∗(t) is converging to
Gaussianity. We will formalise this result in a moment in a much wider context.

Second order properties of returns

In this subsection we derive the moments of discrete time returns (4.4) implied by a general
continuous time SV model with β = 0. In particular

Var(y2n) = 6ω2r∗∗(h̄) + 2h̄ξ,

Cov
(
y2n, y

2
n+s

)
= Cov

(
σ2n, σ

2
n+s

)
= ω2r∗∗(h̄s),

using (??). Consequently

Cor{y2n, y2n+s} =
♦r∗∗(h̄s)

6r∗∗(h̄) + 2h̄2(ξ/ω)2
= q−1h̄−2r∗∗(h̄s), (5.5)

where
r∗∗(s) = r∗∗(s+ h̄)− 2r∗∗(s) + r∗∗(s− h̄), (5.6)

and
q = 6h̄−2r∗∗(h̄) + 2(ξ/ω)2. (5.7)

We give an example of this in practice.

• Suppose r(s) = exp(−λs), which is the autocorrelation function of τ(t) for all OU and

CIR processes (assuming r exists). Then r∗∗(t) = λ−2
(
e−λt − 1 + λt

)
implying

♦r∗∗(h̄s) = λ−2(1− e−λh̄)2e−λh̄(s−1), s > 0.

This results in

Cor{σ2n, σ2n+s} = de−λh̄(s−1), Cor{y2n, y2n+s} = ce−λh̄(s−1), s > 0 (5.8)

where

1 ≥ d =
(1− e−λh̄)2

2 {e−λh̄ − 1 + λh̄} (5.9)

≥ c =
(1− e−λh̄)2

6 {e−λh̄ − 1 + λh̄}+ 2(λh̄)2(ξ/ω)2
≥ 0.

Note that (5.8) implies that σ2n and y2n follow constrained ARMA(1, 1) processes with
common autoregressive parameters and with the moving average root being stronger for
σ2n than for the y2n. The ARMA structure implies that yn is weak GARCH(1, 1). Finally,
as h̄→ 0 so d→ 1 and so σ2n behaves like a first order autoregression.
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5.2.2 SV models and stochastic analysis

SV models have continuous sample paths

A key feature of basic SV models is that the solution to (6.12), y∗(t), has continuous sample
paths so long as τ(t) is càdlàg. This follows from σ2∗(t) having continuous sample paths so long
as τ(t) is càdlàg. Consequently these models are fundamentally different from those generated
by subordinating Brownian motion using the subordinators such as the gamma and the inverse
Gaussian Lévy processes discussed in Chapter two of this book. This important point is illus-
trated in Figure ? which shows a gamma Lévy process and the resulting sample paths for the
subordinated series, together with an SV model constructed where σ2(t) is a Γ-OU process.

SV models are local martingales

The special case of the SV model given in (5.1)

Quadratic variation of SV models

Ito calculus and SV models

5.2.3 Leverage

Leverage for OU based SV models

It is possible to generalise (6.12) to allow for the feedback of the innovations of the volatility
process into the level of the asset price. In particular, we write

dy∗(t) = {µ+ βτ(t)} dt+ σ(t)dw(t) + ρdz̄(λt), (5.10)

where z̄(t) = z(t)− Ez(t), the centred version of the BDLP. It is important to understand that
ρ does not represent a correlation in this model. Overall this model to deal with the so called
leverage type problem which formalises the observation that for equities a fall in the price is
associated with an increase in future volatility. In particular we have that

yn|σ2n, zn ∼ N(µh̄+ βσ2n + ρzn, σ
2
n),

where
zn = z̄(nλh̄)− z̄ {(n− 1)λh̄} .

We will discuss some aspects of this model in Section 4 of this Chapter.

Leverage for diffusion based OU models

The financial economics literature usually uses an alternative leverage model. This correlates
the Brownian motion which appears in the price and volatility equations. Let use write, for a
general diffusion based volatility process,

dy∗(t) = {µ+ βτ(t)} dt+ σ(t)dw(t), dτ(t) = g {τ(t)} dt+ h {τ(t)} db(t),

where w(t) and b(t) are correlated standard Brownian motions with

Cov(w(t), b(t)) = ρt.

We can then rewrite the model, in law, as

dy∗(t) = {µ+ βτ(t)} dt+
√
1− ρ2σ(t)dw1(t) + ρσ(t)db(t),
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where w1(t) is stochastically independent from b(t). Then

yn|σ2n, σbn ∼ N(µh̄+ βσ2n + ρσbn,
(
1− ρ2

)
σ2n),

with

σb(t) =

∫ t

0
σ(u)db(u).

Of course, although σbn is uncorrelated with σ2n, these two processes are not independent.

5.2.4 Specific results for OU based SV models

Background

Some of the above results can be made much more explicit when σ2(t) is of OU type. In this
subsection we will develop some of these results. In partical we will study the cumulant and
conditional cumulant function of y∗(t), as well as some corresponding moments.

We can give an explicit cumulant function for the OU type volatility process. In particular,
using (??), we have that

K{ζ ‡ y∗(t)} = ξµt+K{ξβ +
1

2
ξ2 ‡ σ2∗(t)}

We have already given the formula for the cumulant generating function of σ2∗(t) in (??).
Consequently we can regard this problem as having been solved in general. Concrete analytic
soloutions to the required integrals are available in the OU-Poisson, OU-Γ, OU-IG, IG-OU and
Γ-OU cases. Hence for all these models we can evaluate the exact density and distribution
function for these variables simply by inverting the cumulant function.

Cumulant functions and moments

The cumulant function for y∗(t)|τ(0) is simply

K{ζ ‡ y∗(t)|τ(0)} = ξµt+K{ξβ +
1

2
ξ2 ‡ σ2∗(t)|τ(0)},

which simply involves the cumulant function of σ2∗(t)|σ2(0). In Chapter 10 we studied this
cumulant function for very many different types of OU processes, implying, in particular, that
we know the cumulant function in the OU-Poisson, OU-Γ, OU-IG, IG-OU and Γ-OU cases. This
will turn out to be an absolutely crucial result for us when we go on to discussing derivative
pricing.

It is worthwhile writing down explicitly the special case of the above result which gives
the first two moments of y∗(t)|τ(0). These work off the result given in (4.55) and (4.56). In
particular,

E {y∗(t)|τ(0)} = µt+ βE
{
σ2∗(t)|τ(0)

}

= µt+ β
{
λ−1(1− e−λt)τ(0) + λ−1ξ

(
λt− 1 + e−λt

)}

and

Var {y∗(t)|τ(0)} = β2Var{σ2∗(t)|τ(0)}+ E
{
σ2∗(t)|τ(0)

}

= 2β2λ−2ω2
(
λt− 2 + 2e−λt +

1

2
− 1

2
e−2λt

)

+λ−1(1− e−λt)τ(0) + λ−1ξ
(
λt− 1 + e−λt

)
.

One of the interesting features of this result is that the conditional variance depending positively
on τ(0) and the conditional mean depends positively on β if β is positive.
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Leverage case

In the leverage case (5.10) the calculations are inevitably more specialised. When τ(t) ∼ OU
we are able to produce very concrete results. In particular

E{ynyn+s} = 0,

Cov
(
yn, y

2
n+s

)
= E{yny2n+s} = ρκ2(1− e−λh̄)2 exp {−λh̄(s− 1)}

Cov(y2n, y
2
n+s) =

(
κ2

2λ2
+ ρ2µ3

)
(1− e−λh̄)2 exp {−λh̄(s− 1)} .

The effect of the leverage term is to allow Cov
(
yny

2
n+s

)
to be negative if ρ < 0. However, in

addition both Cov
(
yny

2
n+s

)
and Cov(y2n, y

2
n+s) damp down exponentially with the lag length

s. We should note that exactly the same dynamic structure as the discrete time quadratic
ARCH model (QARCH). Hence we can think of the QARCH model as a kind of discrete time
representation of our continuous time leverage model, generalising the unleveraged result.

5.2.5 Specific results for diffusion based SV models

5.2.6 SV models with added jumps

5.2.7 Lévy processes with SV effects

5.2.8 Stationary SV models

dy(t) = {µ+ βτ(t)− λy(t)} dt+ σ(t)dw(t).

Could also look at a reflecting version of this model which puts

dy(t) = {µ+ βτ(t)− λy(t)} dt+ σ(t)y1/2(t)dw(t),

5.2.9 Econometrics of SV models on low frequency data

5.2.10 Empirical performance of SV models on low frequency data

5.3 Multivariate stochastic volatility

5.3.1 Introduction

MULTIVARIATE LEVY PROCESSES FROM CHAPTER 2.
A simple multivariate structure for a log-price vector can be generated off aN×1 multivariate

SV model. In particular a simple extension of the univariate setup is to write

dy∗(t) =
{
µ+ β′Σ(t)

}
dt+Σ(t)1/2dw(t),

where w(t) is a vector of independent standard Brownian motions. Then the return vector

yn = y∗ (nh̄)− y∗ ((n− 1) h̄) ,

is a multivariate mixture of normals. In particular

yn|Σn ∼ N(µh̄+ β′Σn,Σn),

where

Σn = Σ∗ (nh̄)− Σ∗ ((n− 1) h̄) and Σ∗(t) =
∫ t

0
Σ(t)dt.
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We call Σ∗(t) integrated covolatility and Σn actual covolatility. For the above SV model the
quadratic covariation is Σ∗(t), i.e. we have

[y∗](t) =p− lim
r→∞

∑
{y∗(tri+1)− y∗(tri )}{y∗(tri+1)− y∗(tri )}′ = Σ∗(t) (5.11)

for any sequence of partitions tr0 = 0 < tr1 < ... < trmr
= t with supi{tri+1 − tri } → 0 for r → ∞.

Again this is a robust measure as it produces the integrated covolatility even if µ and β are
non-zero. However, it is an entirely asymptotic concept and so is not directly applicable in
practice.

5.3.2 Factor models

dy∗(t) = {µ+Σ(t)β} dt+Σ(t)1/2dw(t),

How do we drive Σ(t)?. A traditional finance approach is to use a factor structure. We
follow that here.

Σ(t) = BΛ(t)B′ + tΓ,

where Γ is diagonal (or nearly so), while

Λ(t) = diag(σ21(t), ..., σ
2
K),

where the elements are independent

dσ2j (t) = −λjσ2j (t)dt+ dzj(λjt).

In discrete time these models have a long history going back to Diebold and Nerlove (1989).
The implications of this model is that we can write

dy∗(t)
L
=
{
µ+BΛ(t)β∗′

}
dt+

K∑

j=1

bjσj(t)dwj(t) + Γ1/2db,

where there is independence amoungst the Brownian motion processes.

5.3.3 Quadratic covariation of SV models

5.3.4 Econometrics of multivariate SV models on low frequency data

5.4 Lévy based SV models

5.4.1 Time deformed Lévy processes

General case

Similiar results can be derived for general Lévy processes which are deformed by general time
chronometers τ ∗(t). Write

y∗(t) = a∗(t) + z(τ ∗(t))

Lévy-Khintchine representation

C{ζ ‡ y1|a1, τ1} = log [E {exp(iζy1)|a1, τ1}] (5.12)

= ζa1 +

(
aiζ − 1

2
σ2ζ2

)
τ1 − τ1

∫

R

{
1− eiζx + iζx1B(x)

}
W (dx).(5.13)

From now on we will assume a∗(t) = µt+ βτ ∗(t), then unconditionally

C{ζ ‡ y1} = ξµh̄+K{aiζ − 1

2
σ2ζ2 −

∫

R

{
1− eiζx + iζx1B(x)

}
W (dx) ‡ τ 1},

yielding similiarly shaped results for C{ζ ‡ y1|F0}.
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NIG based models

Normal gamma based models

5.5 Conclusion

5.6 Appendix of derivations and proofs

5.7 Exercises

5.8 Appropriate literature

5.8.1 Stochastic volatility

The history of stochastic volatility models is particularly confusing. This is because they live on
the intersection of many areas in probability theory, finance and econometrics. We will attempt
to clarrify issues. Some of the earlier work on this topic is discussed in the review articles by
Taylor (1994), Shephard (1996) and Ghysels, Harvey, and Renault (1996).

If σ2∗(t) were a Lévy process, then it is a subordinator and y∗(t) is itself a Lévy process as it
is a subordinated Brownian motion by a classical subordinator. We will choose to say these are
not stochastic volatility models for they are entirely satisfactorily called Lévy processes! This
means that we will regard the seminal paper by Clark (1973) on subordination as a paper not
on SV processes. This goes against quite a lot of the econmetrics literature which regards this
paper as the first one on SV paper.

The first real SV paper is due to Taylor (1982), but this was phrased in discrete time. It
placed

yn = εn exp(hn/2), εn ∼ NID(0, 1),

where hn is a Gaussian autoregression which is assumed stochastically independent of the εn
process. We can think of this as a roughly approximate continuous time SV model where the
log of the volatility is a Gaussian OU process. This paper has received very little attention in
econometrics, although the later exposition in Taylor (1986) is widely cited.

Independently Hull and White (1987) phrased a SV model in continuous time using the
above framework, although their volatility process was assumed to be a non-linear diffusion
driven by Brownian motion. This paper addressed the pricing of derivatives written on these
processes. Although it did not give an analytic solution to this problem, this paper is seminal
for it stimulated the development of both finance and econometric work in this area. Immediate
finance developments off this initial paper are Chesney and Scott (1989), Scott (1987), Wiggins
(1987), Scott (1991), Stein and Stein (1991), Scott (1997), Heston (1993) and Duffie, Pan,
and Singleton (2000). The papers by Heston, Duffie, Pan and Singleton are particularly worth
emphasising for they work with CIR processes. We have seen that this is basically the only
non-linear diffusion for which we are able to carry out analytic calculations. Hence this style of
work is closest to our own on non-Gaussian OU processes.

Stochastic volatility models entered the econometrics literature with the paper by Melino and
Turnbull (1990) but it was only with Harvey, Ruiz, and Shephard (1994) that the econometrics
community became widely aware of this model. Since that time there have been enormous
numbers of paper written on the estimation of discrete and continuous time SV models. A
very limited list of relevant papers are (i) using Markov chain Monte Carlo by Jacquier, Polson,
and Rossi (1994), Kim, Shephard, and Chib (1998) and Elerian, Chib, and Shephard (2001),
(ii) using simulated method of moments by Duffie and Singleton (1993), (iii) indirect inference
by Gourieroux, Monfort, and Renault (1993), (iv) efficient method of moments by Gallant and
Tauchen (1996), (v) simulated likelihood methods by Sandmann and Koopman (1998).
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Recently there has been developing a literature on the use of both option and underlying
prices to estimate SV models. This is a very interesting area. Earlier work on this topic includes
Renault (1997).

Multivariate models ???.
The first paper to deal with SV models built using non-Gaussian OU processes was Barndorff-

Nielsen and Shephard (2001a), which developed the basic theory. This paper looked at some
preliminary empirics and also derived some simple option pricing models. Some of these issues
will be returned to in later chapters. The result on returning being mixing is derived in Genon-
Catalot, Jeantheau, and Larédo (2000).
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Chapter 6

Realised variation and covariation
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Abstract: This Chapter sets out an analysis of realised variance and covariation, that is sums
of high frequency squared or outer-producted returns. The probability limit of such statistics is
well known using the theory of quadratic variation . We extend this to provide a distribution
theory, which looks at the approximate distribution of the difference between realised covariation
and quadratic covariation. This theory can be used to provide a distribution theory for regression
and correlation between asset returns, as well as economically interesting objects like asset
allocation weights and efficiency frontiers for investment decisions. Throughout the theory is
illustrated by the application of the theory to financial data.

6.1 What is this Chapter about?

In this Chapter we provide an econometric framework for the recently introduced concepts of
realised variance and covariation. These methods, which are based on extensions of quadratic
variation and covariation, have become increasingly popular in the context of the advent of high
frequency financial data. This framework allows us to have a better understanding of regression
and correlation in the context of financial data.

This Chapter has ? other sections. They have the following goals.

• What are realised variances and realised covariation? We set out a framework for under-
standing their properties.

• A distribution theory for realised variance .

• Empirical examples of the distribution theory.

• Theory and proof of the asymptotic distribution theory for realised variance. This is a
starred section.

• A distribution theory for realised covariation and consequently a distribution theory for
realised regression and correlation.

• Empirical examples of the distribution theory.

• Theory and proof of the asymptotic distribution theory for realised covariation. This is a
starred section.

• Using the theory to perform model based smoothing and forecasting.

• Draw conclusions from the Chapter.

• Discuss the literature on realised quantities.

This Chapter is followed by one of power variation, a generalisation of quadratic variation
which looks at limiting properties of sums of powers of absolute high frequency returns. This
work will build on the content of this Chapter.

6.2 What is realised variance and covariation?

6.2.1 Introduction

This Chapter analyses econometric strategies for measuring and predicting the variability of
returns and the covariability between different asset returns. It is based on the innovative use of
high frequency financial data yielding statistics called realised variance and realised covariation.
Intimately related to ideas of quadratic variation and covariation for special semimartingales, the
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analysis provides an asymptotic distribution theory (not just probability limit) based on a fixed
interval of time (e.g. a trading day or a calendar month), allowing the number of high frequency
returns during this period to go to infinity. The theory allows us to study how volatilities,
covariances, correlations and regression coefficients change through time by computing these
quantities over non-overlapping intervals of time and providing confidence limits for them.

The econometrics is motivated by the advent of complete records of quotes or transaction
prices for many financial assets. Theoretical and empirical work suggests that the use of such
high frequency data is both informative and simplifying for it brings us closer to the theoretical
models based on continuous time. However, market microstructure effects (e.g. discreteness of
prices, bid/ask bounce, irregular trading etc.) means that there is a mismatch between asset
pricing theory based on semimartingales and the data at very fine time intervals. This suggests
that we cannot simply rely on empirical computations based on literally infinitesimal returns,
instead we need a distribution theory for these estimators. This theory will reflect the fact that
we will use a large but finite number of high frequency returns in our empirical work, informing
us of the difference between the empirical reality and the theoretical limit of using returns over
tiny time intervals.

We suppose there are M intra-h̄ observations during each h̄ > 0 time period and that log-
price of an asset is written as y∗. Our approach is to think of M as large and increasing. It will
drive our limiting theory. Then high frequency observations will be defined as

yj,i = y∗
(
(i− 1) h̄+ h̄jM−1

)
− y∗

(
(i− 1) h̄+ h̄ (j − 1)M−1

)
, (6.1)

the j-th intra-h̄ return for the i-th period (e.g. if h̄ is a day, M = 1440, then this is the return
for the j-th minute on the i-th day). Then our initial focus of attention will be on the realised
variance

[y∗M ]i =
M∑

j=1

y2j,i, (6.2)

or the corresponding realised volatility √√√√
M∑

j=1

y2j,i. (6.3)

These statistics measure the variability of the asset during the i-th period. At first sight they
look rather odd, for unlike standard variance based measures they do not have their means
removed and are not divide by M . The lack of a mean correction is due to it being of negligible
importance for moderate values ofM , while the lack of a division byM arises as the magnitude of
the individual yj,i tends to get smaller withM as they are returns over intervals of length h̄M−1.
These issues will become clearer in a moment. Before we proceed we should note that, rather
confusingly from our viewpoint, some of the econometric literature on this topic calls [y∗M ]i the
realised volatility. Throughout this book we have followed the finance literature in always calling
standard deviation type objects volatility and hence we have called (6.3) the realised volatility
and (6.2) the realised variance . This is the nomenclature used in the derivative markets based
on these objects. Hopefully econometricians will not be too put off by this change in name.

Later in this Chapter attention will turn to the multivariate version of this, where y∗ is a
q-dimensional asset price and then we write the k-th element of the vector of returns yj,i, defined
in (6.1), as yj,i(k). The generalisation of the realised variance is the realised covariation matrix

[y∗M ]i =
M∑

j=1

yj,iy
′
j,i =





M∑

j=1

yj,i(k)yj,i(l)




k,l=1,...,q

, (6.4)
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which has the realised variances of the individual assets on its leading diagonal and the realised
covariances on its off-diagonals. This matrix plays a central role in modern financial economet-
rics for simple functions of it deliver regression and correlation statistics between asset returns.
In particular the realised regression of returns of asset l on returns of asset k is defined as

β̂i(lk) =

∑
yj,i(k)yj,i(l)∑
y2j,i(k)

,

while the corresponding realised correlation is

ρ̂i(lk) =

∑
yj,i(k)yj,i(l)√∑
y2j,i(k)

∑
y2j,i(l)

.

6.2.2 Probability limits and semimartingales

Recall that in financial economics there is little lost in assuming that y∗ is a special semimartin-
gale. Under these conditions the probability limit of [y∗M ]i has been known for many years using
the theory of quadratic covariation. Here we remind readers of the substance of that theory,
before we go beyond this to develop the asymptotic distribution theory.

Recall a q dimensional special semimartingale y∗ can be uniquely decomposed as

y∗(t) = α∗(t) +m∗(t), (6.5)

where α∗(t), a drift term, is a predictable process with locally bounded variation paths and m∗(t)
is a local martingale. One of the most important aspects of semimartingales is the quadratic
covariation (QV) defined as

[y∗](t) =p− lim
M→∞

M−1∑

j=0

{y∗(tj+1)− y∗(tj)}{y∗(tj+1)− y∗(tj)}′, (6.6)

for any sequence of partitions t0 = 0 < t1 < ... < tM = t with supj{tj+1 − tj} → 0 for M →∞.
Here p− lim denotes the probability limit of the sum. Later it will be helpful to label the k, l-th
element of the QV [y∗](t) as the quadratic covariance

[
y∗(k), y

∗
(l)

]
(t) =p− lim

M→∞

M−1∑

j=0

{y∗k(tj+1)− y∗k(tj)}{y∗l (tj+1)− y∗l (tj)}, (6.7)

while the k-th diagonal element of [y∗](t) is the quadratic variation

[y∗(k)](t) =p− lim
M→∞

M−1∑

j=0

{y∗k(tj+1)− y∗k(tj)}2.

In general
[y∗](t) = [y∗c](t) +

∑

0≤s≤t
∆y∗(s)∆y∗(s)′, (6.8)

where y∗c is the continuous component of y∗ and ∆y∗(t) = y∗(t)− y∗(t−) are the jumps at time
t. In the context of the special semimartingale (A.2) the QV becomes

[y∗](t) = [m∗](t) +
∑

0≤s≤t
∆α∗(s)∆α∗(s)′ +

∑

0≤s≤t
∆m∗(s)∆α∗(s)′ (6.9)

+
∑

0≤s≤t
∆α∗(s)∆m∗(s)′, (6.10)
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the QV of m∗ plus terms which are influenced by the jumps in α∗ and m∗. If α∗ is continuous
then we obtain the simplification

[y∗](t) = [m∗](t), (6.11)

irrespective of the presence of jumps in the local martingale component. This holds as the
quadratic variation of any continuous, locally bounded variation process is zero. The result
(A.10) is powerful for it does not depend upon the model for m∗ or α∗, only on the assumption
that α∗ is continuous.

If we return to the cases of realised covariances and realised volatilities, we have under special
semimartingales that as M →∞

[y∗M ]i =
M∑

j=1

yj,iy
′
j,i

p→ [y∗]i ,

where
[y∗]i = [y∗](h̄i)− [y∗](h̄ (i− 1)−).

This implies, in particular, √√√√
M∑

j=1

y2j,i
p→
√
[y∗]i.

Likewise

β̂i(lk) =

∑
yj,i(k)yj,i(l)∑
y2j,i(k)

p→

[
y∗(k), y

∗
(l)

]
i[

y∗(k)

]
i

,

and

ρ̂i(lk) =

∑
yj,i(k)yj,i(l)√∑
y2j,i(k)

∑
y2j,i(l)

p→

[
y∗(k), y

∗
(l)

]
i√[

y∗(k)

]
i

[
y∗(l)

]
i

.

These are entirely general results and cover all the interesting cases in financial economics.

6.2.3 A stochastic volatility model

The above theoretical framework is too general for us to be able to derive a distribution theory
for

M∑

j=1

yj,iy
′
j,i − [y∗]i .

This is essential in order to be able to construct confidence intervals on realised quantities such
as realised regression and correlation. As a result we have had to specialise. In particular we
make three assumptions in our treatment of the univariate and multivariate cases

(A). That m∗ is a multivariate stochastic volatility (SV) process

m∗(t) =
∫ t

0
Ξ(u)dw(u), (6.12)

where Ξ(t), is the instantaneous or spot covolatility matrix, and w is standard multivariate
Brownian motion. We write

Σ(t) = Ξ(t)Ξ(t)′,

the spot covariance matrix process. By construction Σ(t) is positive semi-definite for all
values of t while we assume that each element of Σ is a local bounded variation process.
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Whatever the model for Σ the implied m∗ must be a continuous local martingale. In what
follows we will write

Σ∗(t) =
∫ t

0
Σ(u)du

the integrated covariance matrix. In the univariate case we will write the volatility in the
familiar way as σ(t) = Ξ(t), while the variance is

τ(t) = σ2(t) = Σ(t),

and the integrated variance is again defined as

τ∗(t) =
∫ t

0
τ(u)du =

∫ t

0
σ2(u)du. (6.13)

(B). For every ν = 1, ..., q the mean process α∗ν is càglàd and satisfies (pathwise)

δ−3/4 max
1≤j≤M

|α∗ν(jδ)− α∗ν((j − 1)δ)| = o(1), (6.14)

in δ ↓ 0. This condition implies that the α∗ process is continuous.

(C). The joint α∗, Σ process is independent of w. This is a strong, undesirable additional
assumption for it rules out empirically important dynamic effects such as leverage. We
will comment in detail about the import of this assumption later.

Conditions (A) and (B) imply this model structure is a continuous, special semimartingale
with

y∗(t) = α∗(t) +
∫ t

0
Ξ(u)dw(u). (6.15)

Example 15 A general α∗ process which satisfies (6.14) is where

α∗(t) = µt+Σ∗(t)β.

This links the mean process to the covariance. It has the feature that for all possible models for
Σ,

∂α∗(t)
∂t

= µ+Σ(t)β.

Differentiability of α∗ is a more restrictive than assumption (B).

Importantly, for this model class

[y∗](t) = [m∗](t) = Σ∗(t),

due to condition (B) ruling out the possibility of jumps in α∗ and (6.12) having continuous
sample paths. This implies

[y∗M ]i
p→ Σi,

where
Σi = Σ∗(ih̄)− Σ∗ {(i− 1) h̄} .

We call Σi the actual or notional covariance matrix. It plays a central role in the probabilistic
analysis of SV models. In the univariate case we write

τ i = Σi = τ∗(ih̄)− τ ∗ {(i− 1) h̄} ,

the actual or notional variance.
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Figure 6.1: Actual τ i and realised
∑M
j=1 y

2
j,i (with M varying) volatility based upon a Γ(4, 8)-

OU process with λ = − log(0.99) and ∆ = 1. This implies ξ = 0.5 and ξω−2 = 8. Code:
/code/realised/simple.ox.

Example 16 Figure 6.1 displays a simulated sample path of integrated variance τ i from an OU
process given by the solution to

dτ(t) = −λτ(t)dt+ dz(λt),

where z is a subordinator. In this example we construct the process so that τ(t) has a Γ(4, 8)
stationary distribution, λ = − log (0.99) and h̄ = 1. Also drawn are the sample path of the
realised variances

∑M
j=1 y

2
j,i (depicted using crosses) where

y∗(t) = βτ ∗(t) +
∫ t

0
τ1/2(u)dw(u),

and β = 0.5 (a very large risk premium). The realised variances are computed using a variety
of values of M . We see that as M increases the size of

∑M
j=1 y

2
j,i − τ i falls, illustrating the

consistency of
∑M
j=1 y

2
j,i for τ i even though β is not zero. Further experiments suggest and

theory says that the effect of β is very small even with quite moderate values of M , although its
effect is discernible when M = 1.
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The quadratic variation result implies that

∂[y∗](t)
∂t

= Σ(t),

which means in this context we can view the history of the Σ process as observable given the paths
of y∗. This implies that Σ(t)dt is the conditional (given the natural filtration) covariance matrix
of the infinitesimal return dy∗(t). As a result Σ∗(t) is the integrated conditional covariance
matrix, while α∗(t) has the interpretation as the integrated conditional mean process.

6.3 Asymptotic distribution of realised variance

6.3.1 Results and comments

In this section we will specialise the notation to the univariate case, delaying the discussion of
the multivariate case for a couple of sections. In particular we will work in terms of volatility,
variance and integrated variance processes. We will review results on this topic, giving an
intuitive understanding of them and illustrate them on Monte Carlo and real data. The next
section will then give a formal proof the result. This is a starred section and so can be skipped
at first reading without the loss of the thread of the book for those readers put off by its higher
mathematical level.

In the special case of y∗ being univariate

y∗(t) = α∗(t) +
∫ t

0
σ(u)dw(u) (6.16)

the following three results hold under assumptions (A)-(C). The first result is that as M → ∞
so, recalling τ(t) = σ2(t),

√
M
h̄

{∑M
j=1 y

2
j,i −

∫ h̄i
h̄(i−1) τ(u)du

}

√
2
∫ ih̄
(i−1)h̄ τ

2(u)du

L→ N(0, 1). (6.17)

The second result is that

∑M
j=1 y

2
j,i −

∫ h̄i
h̄(i−1) τ(u)du√

2
3

∑M
j=1 y

4
j,i

L→ N(0, 1). (6.18)

These two limit theorems are linked together by the third result which is that

M

3h̄

M∑

j=1

y4j,i
p→
∫ ih̄

(i−1)h̄
τ2(u)du. (6.19)

The result (6.18) is statistically feasible, while (6.17) is perhaps more informative from a theo-
retical viewpoint. In particular the two results imply:

• ∑M
j=1 y

2
j,i converges to

∫ h̄i
h̄(i−1) τ(u)du at rate

√
M . This considerably strengthens the QV

result, for now we know the rate of convergence, not just that it converges.

• The limit theorem is unaffected by the form of the drift process α∗, smoothness condition
(6.14) is sufficient that its effect becomes negligible. Again this considerably strengthens
the QV result which says the p-lim is unaffected by the drift. Now we know this result
extends to the next order term as well.
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• Knowledge of the form of the volatility dynamics is not required in order to use this theory.

• The fourth moment of returns need not exist for the asymptotic normality to hold. In such
heavy tailed situations, the stochastic denominator

∫ ih̄
(i−1)h̄ τ

2(u)du loses its unconditional
mean. However, this property is irrelevant to the workings of the theory.

• The volatility process τ(t) can be non-stationary, exhibit long-memory or include intra-day
effects.

• ∑M
j=1 y

2
j,i−

∫ h̄i
h̄(i−1) τ(u)du has a mixed Gaussian limit implying that marginally it will have

heavier tails than a normal.

• The magnitude of the error
∑M
j=1 y

2
j,i −

∫ h̄i
h̄(i−1) τ(u)du is likely to be large in times of high

volatility.

• Conditionally on
∫ h̄i
h̄(i−1) τ

2(u)du and
∫ h̄k
h̄(k−1) τ

2(u)du, the errors

M∑

j=1

y2j,i −
∫ h̄i

h̄(i−1)
τ(u)du and

M∑

j=1

y2j,k −
∫ h̄k

h̄(k−1)
τ(u)du

are asymptotically independent and jointly normal for i 6= k.

• Some of the features of (6.17) appear in the usual cross-section asymptotic theory of the
estimation of σ2 when zi ∼ NID(0, σ2). Then

√
M
{

1
M

∑M
j=1 z

2
i − σ2

}

√
2σ4

L→ N(0, 1),

whose natural feasible version is

√
M
{

1
M

∑M
j=1 z

2
i − σ2

}

√
2

3M

∑M
j=1 z

4
i

L→ N(0, 1).

This has quite a few differences from (6.18). In particular the denominator divides by M
rather than multiplies by M , while in the numerator

∑M
j=1 z

2
i is divided by M where as in

the theory for realised variance it is left unscaled.

• These results are also quite closely related to some work on the asymptotic distribution
theory for an estimator of Σ(t), the spot (not integrated) variance. The idea there is to
compute a local variance from the lagged data, e.g.,

Σ̂(t) = h̄−1
M∑

j=1

{
y∗
(
t− h̄jM−1

)
− y∗

(
t− h̄ (j − 1)M−1

)}2
. (6.20)

They the behaviour of this estimator can then studied as M → ∞ and h̄ ↓ 0 under some
assumptions. This “double asymptotics” yields a Gaussian limit theory so long as h̄ ↓ 0
and M →∞ at the right, related rates. The double asymptotics makes it harder to use in
practice than our own simpler analysis, which just needs M → ∞. This is made possible
because our goal is to estimate the easier integrated covariation rather than the harder
spot covariation.
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6.3.2 Intuition about the result

The proof of the result spells out the details of why (6.18) and (6.17) hold. Here we build some
intuition for the result in the case where the drift process α∗ is set to zero. This maybe helpful
to readers before delving into the proof or for readers who do not want to read the proof. As
we can see from the result, it holds for all values of i. In order to simplify the notation in the
exposition it is helpful to set i = 1 and drop reference to that subscript.

We start with

y∗(t) =
∫ t

0
σ(u)dw(u),

where σ and w are independent processes. This implies

yj |τ j ∼ N(αj , τ j),

where
τ j = τ∗

(
h̄jM−1

)
− τ∗

(
h̄ (j − 1)M−1

)
, (6.21)

the high-frequency increment to integrated variance. Conditional on the path of the variance
process τ

u =
M∑

j=1

y2j −
∫ h̄

0
τ(u)du

L
=

M∑

j=1

τ j
(
ε2j − 1

)
,

where εj
i.i.d.∼ N(0, 1). Thus u, the realised variance error, is a mixture of weighted centred chi-

squared variables. The terms in the sum τ j
(
ε2j − 1

)
are zero means and independent, conditional

on the weights. If the weights do not trend upwards or collapse to zero then we might expect√
Mu to be roughly Gaussian with a mean of zero and variance of

2M
M∑

j=1

τ2j .

For large M the locally bounded variation assumption on τ implies, writing

τ j =
M

h̄

∫ h̄jM−1

h̄(j−1)M−1
τ(u)du,

that
M
h̄

∑M
j=1 τ

2
j = h̄

M

∑M
j=1 τ j

2

p→ h̄
∫ h̄
0 τ

2(u)du.

The theory and proof firms up these approximations, yielding the infeasible limit result given
in (6.17). As this result has a limiting distribution which does not depend upon Σ, it holds
unconditionally as well as conditionally on τ .

The step to making the result feasible is to prove (6.19). However,

M
3h̄

∑M
j=1 y

4
j

L
= h̄

3M

∑M
j=1 τ j

2ε4j
p→ h̄

∫ h̄
0 τ

2(u)du.

We call
M

3h̄

M∑

j=1

y4j (6.22)

the quarticity of the high frequency data. The application of Slutsky’s theorem yields the desired
feasible limit theory (6.18).
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6.3.3 Asymptotically equivalent results

The quarticity is not the only consistent estimator of
∫ h̄
0 τ

2(u)du, although in practice we have
found it to be the most accurate of all the different options we have considered. In particular

M
h̄

∑M
j=2 y

2
j y

2
j+1

L
= h̄

M

∑M−1
j=1 (τ j) (τ j+1) ε

2
jε

2
j+1

p→ h̄
∫ h̄
0 τ

2(u)du.

Lagging by a single time unit is not particularly important here, some other small lag could
have been used. This implies the non-negative estimator

M

h̄

M∑

j=1

y4j −
M

h̄

M−1∑

j=1

y2j y
2
j+1

p→ 2h̄

∫ h̄

0
τ2(u)du,

and so provides an alternative denominator in the infeasible limit theory (6.17). In particular
this delivers the feasible theories

∑M
j=1 y

2
j −

∫ h̄
0 τ(u)du√∑M

j=1 y
4
j −

∑M−1
j=1 y2j y

2
j+1

L→ N(0, 1),

and ∑M
j=1 y

2
j −

∫ h̄
0 τ(u)du√

2
∑M−1
j=1 y2j y

2
j+1

L→ N(0, 1).

The latter is interesting for it avoids the use of fourth moments of the data in the denominator.

6.3.4 Log transforms and realised volatilities

The basic limit theory results (6.17) and (6.18) can be embellished in a number of ways. One ap-
proach, which Monte Carlo experiments suggest improves the finite sample behaviour of asymp-
totic approximation, is to take a logarithmic transform. A straightforward application of the
delta-method1 yields the infeasible limit theory

√
M
h̄

{
log

∑M
j=1 y

2
j − log

∫ h̄
0 τ(u)du

}

√
2
∫ h̄
0 τ

2(u)du/
(∫ h̄

0 τ(u)du
)2

L→ N(0, 1).

The denominator is invariant to scaling the returns so we might expect the denominator not
to vary so much through time even when there is volatility clustering. In practice we have to
replace the unobserved denominator by an estimator, yielding the feasible approximation

log
∑M
j=1 y

2
j − log

∫ h̄
0 τ(u)du√

2
∑M
j=1 y

4
j /
(∑M

j=1 y
2
j

)2
L→ N(0, 1). (6.23)

Confidence limits for
∑M
j=1 y

2
j based on this theory will be non-symmetric due to the curvature

of the log-function.

Example 17 We continue with the simulation from Example 16 which was based on an SV
model with a Γ(4, 8)-OU process for τ . Based on a sample of 12,000 days, we study the perfor-
mance of the asymptotic theory based on the original feasible version (6.18) and the log-version

1This is based on approximating log x by

logµx +
x− µx

µx
,

where µx is the p-lims of x.
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Figure 6.2: Left graphs: Actual
∑M
j=1 y

2
j,i −

∫ h̄i
h̄(i−1) τ(u)du plotted again i and twice asymptotic

S.E.s. Middle graphs: log
∑M
j=1 y

2
j,i − log

∫ h̄i
h̄(i−1) τ(u)du plotted against i and twice asymptotic

S.E.s. Right graphs: QQ plot of the standardised realised volatility error (X-axis has the expected
quantiles, Y-axis the observed). Code: simple.ox.

(6.23). Column one of Figure 6.2 the time series plot of
∑M
j=1 y

2
j,i−

∫ h̄i
h̄(i−1) τ(u)du against i, given

by crosses, together with their 95% confidence intervals based on using two asymptotic standard
deviations. These are computed using M = 48, 96 and 288. The pictures show a number of fea-
tures. First, asM increases so the confidence intervals shrink. More interestingly, the size of the
intervals vary dramatically through time. This was predicted by the theory, but the practical im-
plication is clear that they vary considerably not just in theory. The second column repeats these
experiments but based on the log-theory. Now the crosses depict log

∑M
j=1 y

2
j,i− log

∫ h̄i
h̄(i−1) τ(u)du.

The confidence limits are now almost constant through time. This holds for any value ofM . This
implies that on the log-scale the realised variance error is approximately Gaussian. Finally, the
third column displays the QQ plots of standardised errors (that is it plots the sorted standardised
residuals against the expected quantile from the normal distribution). By standardised errors we
mean the left hand side of (6.18) and (6.23). This assesses the Gaussianity of the finite sample
distribution and so the performance of the asymptotic distribution. The graphs suggest both the
original and log-version have a long left hand tail, but the log-version is much more precise.
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The above theory can be used to provide confidence limits for the realised volatilities

√√√√
M∑

j=1

y2j ,

by just square rooting the confidence limits for the realised variance . It is of some interest to
have a limiting theory directly in terms of the realised volatility however. The resulting theory,
again based on the delta method2 has

√
M
h̄

{√∑M
j=1 y

2
j −

√∫ h̄
0 τ(u)du

}

√
2
∫ h̄
0 τ

2(u)du/
(∫ h̄

0 τ(u)du
)

L→ N(0, 1).

Here the denominator is not scale invariant.

6.4 Empirical examples of realised volatilities

6.4.1 A time series of daily realised volatilities

Figure 6.3(a) displays the first 50 actively traded days after 1st December 1986 of the stochasti-
cally interpolated exchange rates for the Dollar/DM and Dollar/Yen Olsen database. The DM
series is given by the crosses, while the Yen series is drawn using a line. The fall in both of
the series corresponds to a fall in the value of the Dollar during this two month period. Figure

6.3(b) displays crosses to denote the realised volatility
√∑M

j=1 y
2
j,i for the DM series for each of

the 50 days using M=144, which corresponds to utilising 10 minute returns. The corresponding
bars are the 95 confidence intervals generated from the log-based asymptotic limit theory given
in (6.23). These show the important widening and closing of the 95% confidence intervals, with
the intervals seemingly being very large when the volatility is high. The picture shows us that
the volatility of the exchange changes has move statistically significantly through time with
periods of high volatility. Figure 6.3(c) displays the corresponding results for the Yen series,
which has a consistently slightly lower level of volatility than the DM series but with common
overall effects. Finally, Figure 6.3(d) shows a cross-plot of the realised volatility for the DM
series against the realised volatility for the Yen series. This shows that these two quantities are
quite closely related, which is not a surprise as they have a common numeraire.

6.4.2 A time series of annual realised volatilities

One use of the asymptotics for realised variances and volatilities is to compute confidence inter-
vals for low frequency data such as annual measures of volatility. Here the high frequency data
would be daily observations and our goal in this subsection is to work with realised volatilities

√√√√
M∑

j=1

y2j,i,

that is the square root of realised variances . Such historical time series are very common in
financial economics.

2This is based on approximating
√
x by

√
µx +

x− µx√
µx

,

where µx is the p-lims of x.
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Figure 6.3: Analysis of two exchange rates Dollar/DM and Dollar/Yen based on the Olsen
database which records the rate every five minutes. X-axis is marked in days from 1st December
1986. Figure (a) displays the movement in the log exchange rates since the start of the sample

marked off in days. Figure (b) shows the daily realised volatility
√∑M

j=1 y
2
j,i for the DM series

computed using M=144 as well as the associate 95% confidence interval. Figure (c) gives the
corresponding result for the Yen series. Figure (d) plots the daily realised volatilities of the DM
series again the corresponding realised volatilities for the Yen series. Code: daily CI.ox.

In this subsection we take a long series on the closing prices on the Dow Jones Industrial
Average, starting on 26th May 1896 and going up to 31st December 2001. This is taken from the
Dow Jones website. This is a narrower index than some of the more widely used series discussed
in the literature, but it has the advantage of being in the public domain.

This series has a small number of recording breaks, which we have ignored as they make no
substantial difference to our analysis. The series has the interesting feature that in the early
part of it the markets were open six days a week, while in more recent years this has reduced to
five. Of course this makes no difference to the implementation of our theory.

There is a very substantial break from 30th July 1914 until 31st December 1914. This was
caused by the start of World War I, with Germany declaring war on Russia on 1st August
1914. This creates some important difficulties for the index was at 71.42 when it closed, while
it reopened at 54 after Christmas in 1914. If we ignore this break, it will imply a very high level
of volatility for 1914 due to the massive movement in the index.

To reconstruct the missing data we link together the log-prices from the start of August to
Christmas using a realisation from a simulated Brownian bridge. The result is shown in Figure
6.4. There is only a single parameter in the linking, the variance of the Brownian motion. This is
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Figure 6.4: Between the vertical lines prices are interpolated using a Brownian bridge (on the
log scale). Code: schwert.ox.

chosen a priori as 0.04/110 per day, which gives a standard deviation of yearly price movements
of around 0.33. This is historically moderately high, reflecting the uncertainty of the period.
The results we give below are not very sensitive to this choice for we will see 1914 is not a
particularly volatile year in this dataset.

The realised volatilities and their 95% confidence intervals are given in Figure 6.5. The
confidence intervals use the log-based limit theory given in (6.23). The results again reflect the
tendency for the intervals to be wide when the level of volatility is high. However, the results are
more varied in this case than in the high frequency analysis we gave for the exchange rate data.
In particular the volatility spike in 1987 is poorly measured for it is caused by high levels of price
movements over a very short time interval. There is not enough data in the daily observations to
pin down precisely the level of volatility in this case. In the 1930s, on the other hand, the high
level of movements was sustained over a long time interval and so we produce quite a precise
estimate of the level of volatility.

6.5 Theory and proof of asymptotics for realised variance ∗

6.5.1 A theory and a lemma

In this starred section we give a formal treatment of the asymptotics of the realised variance,
including giving proofs. It can be skipped on first reading without losing the thread of the book.
Recall that δM = h̄ and that for the processes y∗ and τ we use the notation

yj = y∗(jδh̄)− y∗((j − 1)δh̄)
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Figure 6.5: Annual realised volatility
√∑M

j=1 y
2
j,n for the Dow Jones Industrial Average (marked

with crosses) together with 95% confidence intervals. Code: schwert.ox.

and

τ [r]∗(t) =
∫ t

0
τ r(s)ds and τ j = τ∗(jδh̄)− τ ∗((j − 1)δh̄),

where τ ∗(t) = τ [1]∗(t). We shall also use

αj = α∗(jδh̄)− α∗((j − 1)δh̄).

Lemma 1. Assume that τ(t) is pathwise locally bounded and Riemann integrable34. Then, for
M →∞ and r > 0 (

M

h̄

)r−1 M∑
j=1

τ rj
a.s.→

∫ h̄

0
τ r(s)ds (6.24)

Theorem 1. For the SV model in (6.16), i.e.

y∗(t) = α∗(t) +
∫ t

0
σ(u)dw(u)

3In other words, locally bounded and Riemann integrable with probability 1
4A function f on an interval I of R is said to be locally bounded and Riemann integrable if it is bounded and

Riemann integrable on every closed subinterval of I. This is the case, in particular, if f is continuous or if it is
of local bounded variation. The latter follows from the fact that a bounded function f is Riemann integrable on
an interval [0, t] if and only if the set of discontinuity points of f has Lebesgue measure 0 (see Hobson (1927,
pp. 465–466), Munroe (1953, p. 174, Theorem 24.4) or Lebesgue (1902)). Any function of bounded variation is
the difference between an increasing and a decreasing function and any monotone function has at most countably
many discontinuities.
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with (α∗, τ)⊥⊥w, suppose the volatility process τ = σ2 is locally bounded and Riemann integrable
and that, for any positive h̄, the mean process α∗ satisfies condition (B) of Section 2.3, i.e.

δ−3/4 max
1≤j≤M

|α∗(jδh̄)− α∗((j − 1)δh̄)| = o(δ3/4) (6.25)

pathwise as δ ↓ 0. Then, for M = δ−1 →∞,

∑M
j=1 y

2
j −

∫ h̄
0 τ(u)du√

2
∑M
j=1 τ

2
j

L→ N(0, 1), (6.26)

where
τ j = τ∗ ((jδh̄)− τ ∗ ((j − 1)δh̄) . (6.27)

Furthermore,
M

h̄

M∑
j=1

τ2j
a.s.→

∫ h̄

0
τ2(s)ds. (6.28)

In particular, then, the limiting law of
√
M
(∑M

j=1 y
2
j −

∫ h̄
0 τ(u)du

)
is a normal variance mixture.

Lemma 1. Assume that τ(t) locally bounded and Riemann integrable5. Then, for M →∞ and
r a positive integer, (

M

h̄

)r−1 M∑
j=1

τ rj
a.s.→

∫ h̄

0
τ r(s)ds (6.29)

6.5.2 Proofs

Proof of Lemma 1. By the definition of τ j , for every j there exists a cj such that

inf
(j−1)M−1h̄≤s≤jM−1h̄

τ(s) ≤ cj ≤ sup
(j−1)M−1h̄≤s≤jM−1h̄

τ(s)

and

τ j = cj
h̄

M
. (6.30)

Since τ is locally bounded and Riemann integrable the same is true of τ r for any r > 0.
Consequently (

M

h̄

)r−1 M∑
j=1

τ rj =
M∑
j=1

crj
h̄

M
→
∫ h̄

0
τ r(s)ds = τ r∗(h̄).

Proof of Theorem 1. Note first that (6.28) follows from Lemma 1.
Next, let

u =
M∑

j=1

y2j − τ∗(h̄)

5A function f on an interval I of R is said to be locally bounded and Riemann integrable if it is bounded and
Riemann integrable on every closed subinterval of I. This is the case, in particular, if f is continuous or if it is
of local bounded variation. The latter follows from the fact that a bounded function f is Riemann integrable on
an interval [0, t] if and only if the set of discontinuity points of f has Lebesgue measure 0 (see Hobson (1927,
pp. 465–466), Munroe (1953, p. 174, Theorem 24.4) or Lebesgue (1902)).Any function of bounded variation is
the difference between an increasing and a decreasing function and any monotone function has at most countably
many discontinuities.
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Conditionally on α1, ..., αM and τ1, ..., τM , the increments y1, ..., yM are independent, and yj
L
=

N(αj , τ j). Thus, conditionally, y
2
j is noncentral χ2 with cumulant function

C{ζ ‡ y2j |τ j} = −
1

2
log(1− 2iτ jζ) + iνjζ(1− 2iτ jζ)

−1

where
νj = α2j (6.31)

Consequently

C{ζ ‡ u|τ1, ..., τM} = −
M∑

j=1

{
1
2 log(1− 2iτ jζ)− iνjζ(1− 2iτ jζ)

−1 + iτ jζ
}

By Taylor’s formula with remainder (cf., for instance, Barndorff-Nielsen and Cox (1989, formula
6.122)) we find, provided

2|ζ| max
1≤j≤M

τ j < 1

that

1
2 log(1− 2iτ jζ)− iνjζ(1− 2iτ jζ)

−1 + iζτ j = ζ2{τ2jQ0j(ζ) + 2νjτ jQ1j(ζ)} − iνjζ,

where

Q0j(ζ) = 2

∫ 1

0

1− s
(1− 2iτ jζs)2

ds

and

Q1j(ζ) = 2

∫ 1

0

1− s
(1− 2iτ jζs)3

ds.

Hence

C{ζ ‡ u|τ 1, ..., τM} = iζ
M∑

j=1

νj − ζ2
M∑

j=1

{
τ2jQ0j(ζ) + 2νjτ jQ1j(ζ)

}
. (6.32)

Now rewrite (6.32) as

C{ζ ‡ u|τ 1, ..., τM} = iζ
M∑

j=1

νj − ζ2
M∑

j=1

(τ2j + 2νjτ j)

−ζ2
M∑

j=1

[
τ2j{Q0j(ζ)− 1}+ 2νjτ j{Q1j(ζ)− 1}

]

=
1

2
ζ22

M∑

j=1

τ j +R(ζ),

where

R(ζ) = iζ
M∑

j=1

νj − 2ζ2
M∑

j=1

νjτ j − ζ2
M∑

j=1

[
τ2j{Q0j(ζ)− 1}+ 2νjτ j{Q1j(ζ)− 1}

]
.

Thus, to verify (6.26) we must show that

M∑

j=1

νj

/√∑M
j=1 τ

2
j → 0,

M∑

j=1

νjτ j
/∑M

j=1 τ
2
j → 0,
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M∑

j=1

τ2j

{
Q0j

(
ζ/
√
2
∑M
j=1 τ

2
j

)
− 1

}/∑M
j=1 τ

2
j → 0,

and
M∑

j=1

νjτ j

{
Q1j

(
ζ/
√
2
∑M
j=1 τ

2
j

)
− 1

}/∑M
j=1 τ

2
j → 0

or, equivalently, by (6.29), that

√
M

M∑

j=1

νj → 0, M
M∑

j=1

νjτ j → 0, (6.33)

M
M∑

j=1

τ2j

{
Q0j

(
ζ/
√
2
∑M
j=1 τ

2
j

)
− 1

}
→ 0, (6.34)

and

M
M∑

j=1

νjτ j

{
Q1j

(
ζ/
√
2
∑M
j=1 τ

2
j

)
− 1

}
→ 0. (6.35)

By (6.25),
max

1≤j≤M
νj = o(M−3/2).

Hence
√
M
∑M
j=1 νj = o(1) and

M
M∑

j=1

νjτ j ≤ o(M−1/2)
M∑

j=1

τ j = τ∗(h̄)o(M−1/2) (6.36)

implying (6.33).
Finally, to show (6.34)-(6.35) we first note that by (6.30), the local boundedness of τ and

(6.29),

τ j

/√∑M
j=1 τ

2
j =

√
Mτ j

/√
M
∑M
j=1 τ

2
j =M−1/2h̄cj

/√
M
∑M
j=1 τ

2
j = O(M−1/2)

uniformly in j. Hence

Q0j

(
ζ/
√
2
∑M
j=1 τ

2
j

)
− 1→ 0 (6.37)

and

Q1j

(
ζ/
√
2
∑M
j=1 τ

2
j

)
− 1→ 0 (6.38)

uniformly in j. Moreover, again using (6.29), we have M
∑M
j=1 τ

2
j = O(1) and (6.34)-(6.35)

follows from this, (6.36) and (6.37)-(6.38).

6.6 Distribution theory for realised covariation

6.6.1 Results and comments

In order to provide a distribution theory for realised covariation we will work with the multi-
variate SV model
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y∗(t) = α∗(t) +
∫ t

0
Ξ(u)dw(u), and Σ(t) = Ξ(t)Ξ(t)′.

Recall that for this model class

[y∗](t) = Σ∗(t) =
∫ t

0
Σ(u)du,

that is quadratic covariation equals integrated covariation. This is due to condition (B) ruling
out the possibility of jumps in α∗ and (6.12) having continuous sample paths. This implies the
well known result that

[y∗M ]i =
M∑

j=1

yj,iy
′
j,i

p→
∫ ih̄

(i−1)h̄
Σ(u)du, (6.39)

as M → ∞. The consistency of realised covariation for increments to actual covariation is of
great importance.

Example 18 Consider the bivariate factor SV model

dy∗(t) = (ι I) ds∗(t), (6.40)

where s∗ is a three dimensional vector of independent, zero mean, SV models with

ds∗k(t) = τ
1/2
k (t)dwk(t), k = 1, 2, 3,

where w is a vector of independent, standard Brownian motions. Here ι is a vector of ones,
which means that there is a common factor amongst the asset prices. This implies

Σ(t) = (ι I) diag {τ 1(t), τ2(t), τ3(t)}
(
ι′

I

)
.

We will assume that each spot volatility σ follows an independent non-Gaussian Ornstein-
Uhlenbeck process

dτk(t) = −λkτk(t)dt+ dzk(λkt), k = 1, 2, 3, (6.41)

where each zk(t) is an independent Lévy process with non-negative increments. We assume
τk(t) ∼ Γ(νk, ak), while taking h̄ = 1. Then our choices for the parameters will be



ν1
ν2
ν3


 =




2.0
1.0
1.5


 ,



a1
a2
a3


 =




5.0
1.0
1.0


 ,



λ1
λ2
λ3


 =




0.04
0.13
3.00


 . (6.42)

This means that

E



σ21(t)
σ22(t)
σ23(t)


 =




0.4
1.0
1.5


 , Cov



σ21(t)
σ22(t)
σ23(t)


 =




0.02 0 0
0 1.0 0
0 0 1.5


 . (6.43)

Thus the common component in the asset prices model (6.40), τ 1, is small in comparison with
the individual effects τ 2 and τ3. However, it is the most persistent of all the three components.
Figure 6.6b presents the results from simulating this process. Display (a) shows the simulated
daily returns of the two assets. From this picture it is not easy to discern the changing dependence
structure in the bivariate process. Display (b) plots the actual covariance

∫ h̄i
h̄(i−1)Σ12(u)du during

each day, as well as the associated realised covariance
∑M
j=1 yj,i(1)yj,i(2) based on M = 12. We

focus on this as the realised variances were handled in the previous sections. Displays (c) and
(d) replicate (b) except we increase M to 48 and then 288. We see that as M increases the
estimator

∑M
j=1 yj,i(1)yj,i(2) becomes closer to

∫ h̄i
h̄(i−1)Σ12(u)du, as expected from the convergence

in probability result in (A.3).
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Figure 6.6: Simulation from a bivariate factor SV model. (a): simulated daily returns. (b):
realised covariance based on M = 12 together with integrated covariance. (c): realised covariance
based on M = 48 . (d) realised covariance based on M = 288 . Code is available at: simple.ox

The result that realised covariation converges in probability to the increment of quadratic
covariation is a very powerful result for it covers all the interesting cases that arise in finan-
cial economics. However, this theory does not provide a guide to the distribution of [y∗M ]i −∫ ih̄
(i−1)h̄Σ(u)du, the difference between realised covariation and actual covariation. This will be
the focus of the next few sections.

The main result discussed here is that the distribution theory for realised variance, discussed
in the previous Sections of this Chapter, extends to cover the case of realised covariation. In
particular, as M →∞, conditionally on α∗ and Ξ, then under conditions (A)-(C)

√
M

h̄



vech




M∑

j=1

yj,iy
′
j,i


− vech

(∫ h̄i

h̄(i−1)
Σ(u)du

)


L→ N(0,Πi), (6.44)

where the vech stacks the (unique) lower triangular elements of the columns of a matrix into a
vector. In particular the scaled asymptotic covariance between

M∑

j=1

yj,i(k)yj,i(l) and
M∑

j=1

yj,i(k′)yj,i(l′)
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is ∫ h̄i

h̄(i−1)
{Σkk′(u)Σll′(u) + Σkl′(u)Σlk′(u)}du. (6.45)

Now defining xj,i = vech(yj,iy
′
j,i) and the symmetric positive semi-definite

Gi =
M∑

j=1

xj,ix
′
j,i −

1

2

M−1∑

j=1

(
xj,ix

′
j+1,i + xj+1,ix

′
j,i

)
, (6.46)

we have that
M

h̄
Gi

p→ Πi. (6.47)

The above result provides a general framework for the asymptotics for realised covariation.
This is an important result. In particular

• The rate of convergence is
√
M for all components of the realised covariation.

• No knowledge of the drift process or spot covariance matrix is needed to use this theory.

• The limit theorem is mixed Gaussian, that is Πi is a stochastic matrix. This means that
the difference between realised covariation matrix and actual covariation matrix will be
heavier tailed than Gaussian.

• The size of realised covariation matrix errors depends upon the level of volatility of the
process. This impacts not just the precision of the realised variance but also the realised
covariances.

• The elements of Πi are explicit, although not observable. They can be consistently esti-
mated by Gi which is a simple function of the high frequency data.

• A convenient feature of the symmetric matrix Gi is that it is positive semi-definite. This
follows because for any conformable vector c,

c′Hc =
M∑

j=1

(
c′xj

)2 −
M−1∑

j=1

(
c′xj

) (
c′xj+1

)
≥ 0, (6.48)

by the properties of the first serial correlation coefficient.

In order to simplify the notation in the exposition it is helpful to again set i = 1 and drop
reference to that subscript.

6.6.2 Discussion

The general results are compact. It is helpful to look at special cases in order to gain further
understanding. Suppose we are interested in the joint distribution of realised covariation in the
bivariate case. Then the Theorem 1 tells us that

√
M

h̄








∑M
j=1 y

2
j(k)∑M

j=1 yj(k)yj(l)∑M
j=1 y

2
j(l)


−

∫ h̄

0




Σkk(u)
Σkl(u)
Σll(u)


 du





(6.49)

L→ N


0,

∫ h̄

0





2Σ2
kk(u) 2Σkk(u)Σkl(u) 2Σ2

kl(u)
2Σkk(u)Σkl(u) Σkk(u)Σll(u) + Σ2

kl(u) 2Σll(u)Σkl(u)
2Σ2

kl(u) 2Σll(u)Σkl(u) 2Σ2
ll(u)




du


 . (6.50)
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The result on the marginal distribution of realised covariance as M →∞ is that

√
M
h̄

{∑M
j=1 yj(k)yj(l) −

∫ h̄i
h̄(i−1)Σkl(u)du

}

√∫ h̄i
h̄(i−1){Σkk(u)Σll(u) + Σ2

kl(u)}du
L→ N(0, 1). (6.51)

Notice that when the spot correlation is zero then Σ is diagonal. When Σkk(t) = Σll(t), then
the asymptotic covariance becomes

∫ h̄

0
Σ2
kk(s)





2 2ρk,l(u) 2ρ2k,l(u)

2ρk,l(u)
(
1 + ρ2k,l(u)

)
2ρk,l(u)

2ρ2k,l(u) 2ρk,l(u) 2




du, (6.52)

where

ρk,l(u) =
Σkl(u)√

Σkk(u)Σll(u)
. (6.53)

This last result is a generalisation of the result given in Anderson (1984, p. 121) on the asymp-
totic joint distribution in the case of i.i.d. Gaussian data.

In order to estimate the Πi matrix we need some generalisations of realised quarticity. Lead-
ing cases are the following. As M →∞ so

M

h̄

M∑

j=1

y4j(k)
p→ 3

∫ h̄

0
Σ2
kk(u)du, (6.54)

M

h̄

M∑

j=1

y2j(k)y
2
j(l)

p→
∫ h̄

0

{
2Σ2

kl(u) + Σkk(u)Σll(u)
}
du. (6.55)

Likewise
M

h̄

M∑

j=1

y2j(k)y
2
j+1(l)

p→
∫ h̄

0
Σkk(u)Σll(u)du, (6.56)

M

h̄

M∑

j=1

(
yj(k)yj(l)

) (
yj+1(k)yj+1(l)

)
p→
∫ h̄

0
Σ2
kl(u)du (6.57)

Example 19 A feasible limit theory for the realised covariance is

∑M
j=1 yj(k)yj(l) −

∫ h̄
0 Σkl(u)du√∑M

j=1 y
2
j(k)y

2
j(l) −

∑M−1
j=1 yj(k)yj(l)yj+1(k)yj+1(l)

L→ N(0, 1), (6.58)

for
M∑

j=1

y2j(k)y
2
j(l) −

M−1∑

j=1

yj(k)yj(l)yj+1(k)yj+1(l)
p→
√∫ h̄

0
{Σkk(u)Σll(u) + Σ2

kl(u)}du,

using (6.55) and (6.57). However, an asymptotically equivalent alternative to this is that

∑M
j=1 yj(k)yj(l) −

∫ h̄
0 Σkl(u)du√

1
2

(∑M
j=1 y

2
j(k)y

2
j(l) +

∑M−1
j=1 y2j(k)y

2
j+1(l)

)
L→ N(0, 1). (6.59)
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6.6.3 Distribution theory for derived quantities

Realised regression

Regression plays a central role both in theoretical and empirical financial economics. For exam-
ple, the regression of the returns of an individual asset on a wide market index is often called a
“beta.” In this Section we use our distribution theory for realised covariation to derive a theory
for univariate regression. Again this will be based on fixed intervals of time and allowing the
number of high frequency observations to go to infinity within that interval. We regress variable
l on variable k, then again surpressing subscripts i,

β̂(lk) =

∑M
j=1 yj(k)yj(l)∑M
j=1 y

2
j(k)

. (6.60)

This involves just elements of the realised covariation and so we can use the asymptotic theory
of the previous section to derive its asymptotic distribution. The probability limit of regression
is known by the theory of QV. In particular

β̂(lk)
p→

[
y∗(k), y

∗
(l)

]

[
y∗(k)

] = β(lk). (6.61)

Here we extend the theoretical results to derive the asymptotic distribution, under our additional
assumptions given above. In this case β(lk) has the simpler form of

β(lk) =

∫ h̄i
h̄(i−1)Σkl(u)du∫ h̄i
h̄(i−1)Σkk(u)du

. (6.62)

The asymptotic distribution can be derived using the delta method6 which yields, asM →∞,
the infeasible limit theory

√
M
h̄

(
β̂(lk) − β(lk)

)

√(∫ h̄i
h̄(i−1)Σkk(u)du

)−2
g(lk)

L→ N(0, 1),

where
g(lk) = d′(lk)Ψ(lk)d(lk), d(lk) =

(
1 −β(lk)

)
(6.63)

and

Ψ(lk) =

∫ h̄i

h̄(i−1)

{
Σkk(u)Σll(u) + Σ2

kl(u) 2Σkk(u)Σkl(u)
2Σkk(u)Σkl(u) 2Σ2

kk(u)

}
du. (6.64)

In practice we have to replace Ψ(lk) and d(lk) by estimators to make the above regression
theory feasible. However, the previous section implies this is straightforward. In particular as
M →∞

β̂(lk) − β(lk)√(∑M
j=1 y

2
j(k)

)−2
ĝ(lk)

L→ N(0, 1). (6.65)

6This is based on approximating x/y by

µx
µy

+
x− µx

µy
−
(
y − µy

)
µx

µ2y
=

µx
µy

+
x

µy
− yµx

µ2y
,

where µx and µy are the p-lims of x and y respectively.
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where

xj = yj(k)yj(l) − β̂(lk)y2j(k) and ĝ(lk) =
M∑

j=1

x2j −
M−1∑

j=1

xjxj+1. (6.66)

An attractive feature of this theory is that all of the required terms are straightforward to
compute. It is interesting to note that

∑M
j=1 xj = 0 exactly in this context.

Realised correlation

The same strategy can be used to derive the asymptotic distribution of the realised correlation
coefficient. We define

ρ̂(lk) =

∑M
j=1 yj(k)yj(l)√∑M

j=1 y
2
j(k)

∑M
j=1 y

2
j(l)

p→

[
y∗(k), y

∗
(l)

]

√[
y∗(k)

] [
y∗(l)

] = ρ(lk) =

∫ h̄i
h̄(i−1)Σkl(u)du√∫ h̄i

h̄(i−1)Σkk(u)du
∫ h̄i
h̄(i−1)Σll(u)du

.

(6.67)
The infeasible asymptotic distribution can be derived using standard linearisation methods7. In
particular as M →∞ so

√
M
h̄

(
ρ̂(lk) − ρ(lk)

)

√(∫ h̄i
h̄(i−1)Σkk(u)du

∫ h̄i
h̄(i−1)Σll(u)du

)−1
gi(l,k)

L→ N(0, 1), (6.68)

where
g(lk) = d′(lk)Π(lk)d(lk), d(lk) =

(
−1

2β(lk) 1 −1
2β(kl)

)′
(6.69)

and

Π(lk) =

∫ h̄i

h̄(i−1)





2Σ2
kk(u) 2Σkk(u)Σkl(u) 2Σ2

kl(u)
2Σkk(u)Σkl(u) Σkk(u)Σll(u) + Σ2

kl(u) 2Σll(u)Σkl(u)
2Σ2

k2(u) 2Σll(u)Σkl(u) 2Σ2
ll(u)




du. (6.70)

The feasible limit theory is that as M →∞ so

ρ̂(lk) − ρ(lk)√(∑M
j=1 y

2
j(k)

∑M
j=1 y

2
j(l)

)−1
ĝ(lk)

L→ N(0, 1). (6.71)

where

xj = yj(k)yj(l) −
1

2
β̂(lk)y

2
j(k) −

1

2
β̂(kl)y

2
j(l) and ĝ(lk) =

M∑

j=1

x2j −
M−1∑

j=1

xjxj+1. (6.72)

Example 20 We continue with Example 18. Figures 6.7(a), (b) and (c) show the sample path
of ρ(lk) for this model, together with its realised estimator ρ̂(lk) based on a variety of values of
M . We see that for small values of M the estimator is poor, but by the time M = 288 it is
reasonably precise except when the correlation is low. The bottom row of pictures in Figure 6.7
shows the corresponding errors ρ̂(lk) − ρ(lk) together with their standard errors computed using
(6.71). We see the intervals increasing in size when ρ(lk) is close to zero and reducing otherwise.

7This is based on approximating x/
√
yz by

µx√
µyµz

+
(x− µx)√

µyµz
− 1

2

(
y − µy

)
µx

µy
√
µyµz

− 1

2

(z − µz)µx
µz
√
µyµz

=
µx√
µyµz

+ ρ

(
x

µx
− 1

2

y

µy
− 1

2

z

µz

)
,

where µx, µy, µz are the p-lims of x, y and z respectively.
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Figure 6.7: Results from a simulation from a bivariate factor SV model. Plotted on the top
graphs are the actual correlation ρ(lk) each day. Also drawn are the estimated values ρ̂(lk) based
on M=12, 48 and 288 in graphs (a), (b) and (c) respectively. On the bottom row of graphs is
ρ(lk) − ρ̂(lk) together with their asymptotic standard errors. Code is available at: simple.ox

One possible way of improving the finite sample behaviour of the asymptotic distribution of
ρ̂(lk) is by using the Fisher-z transformation

z(lk) =
1

2
log

1 + ρ̂(lk)
1− ρ̂(lk)

and ζ(lk) =
1

2
log

1 + ρ(lk)
1− ρ(lk)

.

Recall Fisher’s analysis was based on M multivariate, independent and identically distributed

Gaussian data, in which case his transformation has the important feature that
√
M
(
z(lk) − ζ(lk)

)

has a standard normal limit distribution and it is well known its asymptotic distribution provides
an excellent approximation to the exact distribution. In the present case

z(lk) − ζ(lk)√{
1−

(
ρ̂(lk)

)2}−2 (∑M
j=1 y

2
j(l)

∑M
j=1 y

2
j(k)

)−1 (∑M
j=1 x

2
j −

∑M−1
j=1 xjxj+1

)
L→ N(0, 1). (6.73)

Example 21 We continue with Example 20 but now we focus on the performance of the Fisher
based asymptotics (6.73). Using the same simulations as reported in the previous example we
now plot z(lk) − ζ(lk) for each day, with their corresponding 95% confidence intervals. This is
given in Figure 6.8. The results show that the confidence intervals are now much more stable.
In particular they do not seem to move in and out with the value of ρ(lk). The finite sample
behaviour of the asymptotic theory is studied in the bottom row of Figure 6.8. It shows the QQ
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Figure 6.8: Results from a simulation from a bivariate factor SV model. Plotted on the top
graphs are the Fisher transformed z(lk) − ζ(lk) for each of the first 200 days based on M=12,
48 and 288 in graphs (a), (b) and (c) respectively, together with the associate standard errors.
On the bottom row of graphs are the corresponding QQ plots to assess normality. The y-axis is
the sorted simulations, on the x-axis are the corresponding expected values. Code is available at:
simple.ox

plot for (6.73) computed based on 2,400 days. The QQ plot draws the sorted standardised errors
(on the y-axis) against that expected under a Gaussian assumption (on the x-axis). Hence if the
asymptotics is a perfect description of the finite sample behaviour the QQ plot should be on a 45
degree line. This line is given in the Figure for comparison. We see that for very small values
of M the approximation is poor, but by the time M = 48 the approximation is quite good and is
very accurate by the time M = 288.

An important aspect of the improved finite sample behaviour of the Fisher-based asymptotics
for the realised correlation is that it can be used in combination with the theory of the log-
realised variances to produce an improved asymptotic theory for the realised covariation matrix.
This could be useful in making inference off any function of the covariance matrix. Given the
centrality of this measure in financial economics this seems to be of some importance.

Efficiency frontiers

NEIL: TO BE ADDED
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Portfolio weights

NEIL: TO BE ADDED

Partial correlation

NEIL: TO BE ADDED

6.7 Empirical example of realised covariation

In this section we extend the work in Section 4 on the analysis of the bivariate return data
on the Dollar/DM and Dollar/Yen to consider the dependence structure between the rates for
the first 50 days of the sample. Figure 6.9 displays the realised correlation between the two
asset returns computed using M = 144. This shows the correlation at first falls and then
increases to a high level. After maintaining that level it falls again. The movements in the

0 5 10 15 20 25 30 35 40 45 50

0.0

0.2

0.4

0.6

0.8

Realised Correlation between Dollar/DM and Dollar/Yen

Figure 6.9: Results from the Dollar/DM and Dollar/Yen return series. Plotted is the realised
correlation for the first 50 days of the sample. The 95% confidence intervals are computed using
the Fisher-transformed asymptotic theory. Code is available at: daily CI.ox

realised correlation are significant for the Figure also displays the 95% confidence intervals for
these statistics, computed using the Fisher-transform based theory (6.73). The intervals are
non-symmetric due to the effect of the transformation. This can be most markedly seen when
the correlation is high.
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6.8 Theory and proofs of the asymptotics for realised covariance∗

6.8.1 Setting

We consider q stochastic processes y∗ν , determined by a set of stochastic differential equations

dy∗ν(t) = dα∗ν(t) + γaν(t)dwa(t) (6.74)

with initial condition y∗ν(0) = 0, ν = 1, ..., q. Here a = 1, ...,m and m may be bigger, equal or
smaller than q. Further, (w1, ..., wm) is m-dimensional Brownian motion, the processes α∗ν(t)
and γaν(t) are assumed to be of locally bounded variation and jointly independent of (w1, ..., wm).
Throughout we are using the Einstein summation convention8 to indices a, b, c, d but not to the
indices k, l, k′, l′. In what is to follow we will write γabkl = γakγ

b
l , with similar notation for other

index combinations.
Let M denote a positive integer and, for an arbitrary t ∈ R+, set

9

δ = t/M

To establish the various limit results on realised covariation it is now convenient to introduce
a concept of higher order variation of semimartingales.

6.8.2 Higher order variations of semimartingales

For any q-dimensional semimartingale X with components Xν , ν = 1, ..., q, we define higher
order variations

[Xν1 , ..., Xνd ](t) =p-lim
δ↓0

[Xδν1 , ..., Xδνd ](t),

(provided the limit exists). Here d denotes a positive integer and ν1, ..., νd is any set of d
indices, each index arbitrarily chosen from {1, ..., q}. Furthermore, Xνδ denotes the discrete
approximation to Xν given by

Xνδ(s) = Xν((j − 1)δ) for (j − 1)δ ≤ s < jδ

and

[Xδν1 , ..., Xδνd ](t) = δ−d/2+1
M∑

j=1

{Xν1(δj)−Xν1((j − 1)δ)} · · · {Xνd(jδ)−Xνd((j − 1)δ)}.

Note that for q = 2 our notation coincides with the usual notation for the covariation of two
semimartingales and we have [Xνδ] = [Xνδ, Xδν ] and [Xδ] = [Xδ, Xδ] where Xδ = (X1δ, ..., Xqδ).

In studying the higher order variations [Xδν1 , ..., Xδνd ] it is helpful to use the fact, which
follows from the multidimensional version of Ito’s formula (cf. for instance Protter (1990, p.
74), that for any continuous semimartingales Y 1

t , ..., Y
m
t (with starting value 0) we have

Y 1
t · · ·Y m

t =
m∑

j=1

∫ t

0

∏

k 6=j
Y k
s dY

j
s +

∑

1≤j<k≤m

∫ t

0

∏

l 6=j,k
Y l
sd[Y

j , Y k]s. (6.75)

For m = 2 this reduces to

Y 1
t Y

2
t =

∫ t

0
Y 1
s dY

2
s +

∫ t

0
Y 2
s dY

1
s +

∫ t

0
d[Y 1, Y 2]s (6.76)

8Recall the Einstein summation convention means that if an index is repeated in a single expression then
summation over that index is understood.

9In reference to the previous Sections, we notice that covering the case i = 1 (i.e. one time period) is sufficient,
for the results for all other values of i follow immediately. In order to simplify the notation we here drop reference
to i and write h̄ = t.
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while for m = 4

Y 1
t Y

2
t Y

3
t Y

4
t =

∫ t

0
Y 1
s Y

2
t Y

3
t dY

4 +

∫ t

0
Y 1
s Y

2
t Y

4
t dY

3 +

∫ t

0
Y 1
s Y

3
t Y

4
t dY

2 +

∫ t

0
Y 2
t Y

3
t Y

4dY 1
s

+

∫ t

0
Y 1
s Y

2
t d[Y

3, Y 4]s +

∫ t

0
Y 1
s Y

3
t d[Y

2, Y 4]s +

∫ t

0
Y 1
s Y

4
t d[Y

2, Y 3]s

+

∫ t

0
Y 2
s Y

3
t d[Y

1, Y 4]s +

∫ t

0
Y 2
s Y

3
t d[Y

1, Y 3]s +

∫ t

0
Y 3
s Y

4
t d[Y

1, Y 2]s. (6.77)

6.8.3 Results

In this subsection we state the limit theorems and corollaries on realised covariation for the
processes

y∗ν(t) = α∗ν(t) +
∫ t

0
γaν(s)dwa(s)

defined at the beginning of the Section. We use the notation yj = (y1j , ..., yqj)
′ where

ykj = y∗k(j)− y∗k((j − 1)δ).

Furthermore,
Σkl(t) = γaakl (t) (6.78)

(Σkl(t) is the spot covolatility matrix of the SV model) and

Σ∗kl(t) =
∫ t

0
Σkl(u)du. (6.79)

Theorem 2. Conditionally on
{αν , γaν}ν=1,...,q;a=1,...,m

the realised covariation matrix

[y∗M ] =





M∑

j=1

ykjylj




k,l=1,2,...,q

, (6.80)

follows asymptotically, as M → ∞, the normal law with mean Σ and covariance matrix δΩ
where Σ is the q × q matrix with

Σ = Σ∗(t) = {Σ∗kl(t)}k,l=1,...,q (6.81)

and Ω is the q2 × q2 array with elements

Ω =

{∫ t

0
{Σkk′(u)Σll′(u) + Σkl′(u)Σlk′(u)}du

}

k,k′,l,l′=1,...,q
. (6.82)

Corollary 1. Unconditionally the asymptotic law of

δ−1/2 ([y∗M ]− Σ) (6.83)

is mixed normal with mean 0 and random covariance matrix Ω.
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Theorem 3. Let

ψ̂klk′l′ = δ−1
M∑

j=1

ykjyljyk′jyl′j

and

ψ̃klk′l′ = δ−1
M−1∑

j=1

ykjyljykk′,j+1yl′,j+1.

Then

ψ̂klk′l′
p→
∫ t

0
{Σkk′(u)Σll′(u) + Σkl′(u)Σlk′(u) + Σkl(u)Σk′l′(u)}du

while
ψ̃klk′l′

p→
∫ t
0 Σkl(u)Σk′l′(u)du

= p− lim
M→∞

ψ̃k′l′kl.

Corollary 2. Defining

ψklk′l′ = ψ̂klk′l′ −
1

2

(
ψ̃klk′l′ + ψ̃k′l′kl

)

we have

ψklk′l′
p→
∫ t

0
{Σkk′(u)Σll′(u) + Σkl′(u)Σlk′(u)}du,

and so there exists a random q2 × q2 matrix H

H =
M∑

j=1

xjx
′
j −

1

2

M−1∑

j=1

(
xjx
′
j+1 + xj+1x

′
j

)
, (6.84)

where10 xj = vec(yjy
′
j), such that

δ−1H
p→ Ω

as M →∞.

Note that H is explicitly calculable in terms of y∗M .
It is sometimes convenient to avoid the symmetric replication in the realised covariation

matrix by employing a vech transformation. Then the limit theory can be easily written as

Corollary 3. As M →∞, conditionally

δ−1/2 {vech ([y∗M ])− vech (Σ)} L→ N(0,Π), (6.85)

while, defining11 xj = vech(yjy
′
j) and

G =
M∑

j=1

xjx
′
j −

1

2

M−1∑

j=1

(
xjx
′
j+1 + xj+1x

′
j

)
, (6.86)

we have that
δ−1G

p→ Π. (6.87)

10Recall the vec notation stacks the columns of a matrix into a vector.
11Recall the vech notation stacks the lower triangular elements of a matrix into a vector. See, for example,

Lutkepol (1996; Ch. 7).

146



The matrix G is still only guaranteed to be positive semi-definite, but should be positive
definite in practice.

Finally we note the following result.

Corollary 4. The asymptotic unconditional covariance of the error term is, if it exists,

E(Ω) =

{∫ t

0
[E {Σkk′(u)Σll′(u)}+ E {Σkl′(u)Σlk′(u)}] du

}

k,k′,l,l′=1,...,q
. (6.88)

6.8.4 Proofs of theorems

We are interested in the limiting behaviour of

[y∗kδ, y
∗
lδ](t) =

M∑

j=1

ykjylj =
M∑

j=1

{y∗k(δj)− y∗k((j − 1)δ)}{y∗l (jδ)− y∗l ((j − 1)δ)}, (6.89)

when the processes α∗k, γ
a
k are considered given by conditioning.

To the asymptotic order considered the limit behaviour of [y∗δ ] is dominated by the infinites-
imal variation of the Brownian motion w, so that - as we shall show - the behaviour of the
processes α∗k does not influence the limit laws.

Case α∗ = 0. Suppose initially that α∗ = (α∗1, ..., α
∗
q) is identically 0, in which case

yj(k) =

∫ jδ

(j−1)δ
γak(s)dwa(s). (6.90)

The summands in (6.89) are independent and since the processes γak are locally of bounded
variation the matrix [y∗δ ] must asymptotically be normally distributed. (Detailed verification of
this follows standard reasoning and is therefore omitted here.) The task is thus to determine
the asymptotic mean and variance of [y∗δ ].

It is convenient to introduce

Γkl(t) =

∫ t

0
γaakl (s)ds

as an alternative notation for and Σkl(t) and to write

Γklj =

∫ jδ

(j−1)δ
γaakl (s)ds.

By (6.90) and (A.25) we find E{ykjylj} = Γklj and hence we have

E{[y∗kδ, y∗lδ](t)} = Γkl(t) = Σkl(t).

Furthermore, for any indices k, l, k′, l′ in {1, ..., q},

Cov {[y∗kδ, y∗lδ](t), [y∗k′δ, y∗l′δ](t)} = E





M∑

j′=1

(ykj′ylj′ − Γklj′)
M∑

j=1

(yk′jyl′j − Γk′l′j)





=
M∑

j=1

E{ykjyljyk′jyl′j} −
M∑

j=1

ΓkljΓk′l′j . (6.91)
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Consider now the case j = 1. Using (A.27) and similarly for other index combinations, we
find

E{yk1yl1yk′1yl′1} =

∫ δ

0
E{
∫ u

0

∫ u

0
γak(s)γ

b
l (s)dba(s)dbb(s)}γck′(u)γcl′(u)du [6]

=

∫ δ

0
γcck′l′(u)

∫ u

0
γaakl (s)dsdu [6] (6.92)

the symbol [6] indicating that E{ykjyljyk′jyl′j} equals the sum of the term given plus 5 similar
terms obtained via permutation of the indices k, l, k′, l′. Continuing the calculation we have

E{yk1yl1yk′1yl′1} =

∫ δ

0
γcck′l′(u)Γkl(u)du [6]

=

∫ δ

0
γcck′l′(u)Γkl(u)du+

∫ δ

0
γcckl(u)Γk′l′(u)du

+

∫ δ

0
γccll′(u)Γkk′(u)du+

∫ δ

0
γcckk′(u)Γll′(u)du

+

∫ δ

0
γcck′l(u)Γkl′(u)du+

∫ δ

0
γcckl′(u)Γk′l(u)du.

Next we note that

d

ds
{Γkl(s)Γk′l′(s)} = γcckl(s)Γk′l′(s) + γcck′l′(s)Γkl(s),

or, in other words,

∫ δ

0
γcck′l′(u)Γkl(u)du+

∫ δ

0
γcckl(u)Γk′l′(u)du = Γkl(δ)Γk′l′(δ).

The terms for other values of the indices behave similarly and all in all we obtain

Cov {[y∗kδ, y∗lδ](t), [y∗k′δ, y∗l′δ](t)} =
M∑

j=1

(Γkk′jΓll′j + Γkl′jΓlk′j). (6.93)

Now, when δ → 0 the sum in (6.93) turns into an integral and behaves as δΩkl,k′l′(t) where

Ωkl,k′l′(t) =

∫ t

0
{γaakk′(s)γccll′(s) + γaakl′(s)γ

cc
lk′(s)}ds,

as stated in Theorem 2.
Turning then to Theorem 3, recall from (6.91) that

Cov {[y∗kδ, y∗lδ](t), [y∗k′δ, y∗l′δ](t)} =
M∑

j=1

E{ykjyljyk′jyl′j} −
M∑

j=1

ΓkljΓk′l′j

From the previous discussion we have

δ−1Cov {[y∗kδ, y∗lδ](t), [y∗k′δ, y∗l′δ](t)} → Ωkl,k′l′(t).

On the other hand, arguing as above it is seen that

δ−1
M∑

j=1

E{ykjyljyk′jyl′j} →
∫ t

0
{γaakl (s)γcck′l′(s) + γaakk′(s)γ

cc
ll′(s) + γaakl′(s)γ

cc
lk′(s)}ds
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and

δ−1
M∑

j=1

ΓkljΓk′l′j →
∫ t

0
γaakl (s)γ

cc
k′l′(s)ds,

and, moreover, that

[y∗δk, y
∗
δl, y

∗
δk′ , y

∗
δl′ ] = δ−1

M∑

j=1

ykjyljyk′jyl′j ,

must converge in probability to the same limit as δ−1
∑M
j=1 E{ykjyljyk′jyl′j}. Thus to obtain a

consistent estimator of Ωkl,k′l′(t) it suffices to find a consistent estimator of
∫ t
0 γ

aa
kl (s)γ

cc
k′l′(s)ds.

The quantity
M−1∑

j=1

ykjyljyk′,j+1yl′,j+1,

solves this problem, as is seen by again applying formula (A.27).

General case To prove that the same limiting laws hold when the mean processes α∗ν are
not 0 (but of locally bounded variation) we first note that

ykjylj = αkjαlj + αkjy0lj + αljy0kj + y0kjy0lj ,

where

y0kj =

∫ jδ

(j−1)δ
γak(s)dwa(s)

and
αkj = α∗k(jδ)− α∗k((j − 1)δ).

Since α∗k is of locally bounded variation, αkj is o(
√
δ) uniformly in k and j. Furthermore,

conditionally on the α∗k and γak processes, we have

αkjy0lj + αljy0kj ∼ N(0, α2kjΓllj + α2ljΓkkj).

Consequently,

[y∗kδ, y
∗
lδ](t) =

M∑

j=1

αkjαlj +
M∑

j=1

(αkjy0lj + αljy0kj) +
M∑

j=1

y0kjy0lj

= o(
√
δ) + op(

√
δ) + [y∗0kδ, y

∗
0lδ](t),

where

[y∗0kδ, y
∗
0lδ](t) =

M∑

j=1

y0kjy0lj .

It follows that, conditionally, δ−1/2{[y∗δ , y∗δ ]− Γ} has the same limit law as δ−1/2{[y∗0δ, y∗0δ]− Γ}
and the latter is as given in Theorem 2.

An analogous argument applies to Theorem 3.
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Figure 6.10: Long time series of the daily movements in the Dollar against the DM and Yen.
Figure (a) change in the rates since 1st December 1986. Figure (b) realised volatility each day
computed using M = 144 for the DM series. Figure (c) realised volatility each day computed
using M = 144 for the Yen series. Figure (d) realised correlation between DM and Yen series
each day computed using M = 144. File: daily realised.ox.

6.9 Time series of realised variances

6.9.1 Framework

So far we have analysed the asymptotics of
∑M
j=1 y

2
j,i as M → ∞ for a single i. In this section

we will explicitly analyse a long time series of realised variances, trying to use the time series
structure to construct more efficient estimators and forecasts of τ i. To start out we have drawn
Figure 6.10 which displays information on the Olsen data on the DM and Yen against the US
Dollar. Figure 6.10(a) shows the movement of the log prices since 1st December 1986 and
demonstrates the strengthening of the Dollar against both currencies. It is more marked against
the Yen which loses half of its value in this period. Recall this decade corresponds to the start
of the long Japanese recession which saw a massive sell off in the value of its stock market while
the US markets were booming. Some of these booms and contractions were funded by outflows
and inflows of capital from foreign investors. This had the effect of moving the exchange rates,

sometimes very rapidly. Figure 6.10(b) shows the daily realised volatility
√∑M

j=1 y
2
j,i drawn

against i, the day, for the DM series. It is computed usingM = 144, corresponding to 10 minute
returns. It is quite a ragged series but with periods of increased volatility. A similar picture
emerges from the corresponding realised volatility for the Yen given in Figure 6.10(c). The most
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stable of the time series is Figure 6.10(d) which displays the realised correlation between the
DM and Yen. This is quite a predictable series with seemingly significant movements in the
correlation.
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Figure 6.11: Autocorrelations of realised quantities using a long time series of the movements
in the Dollar against the DM and Yen. Plots are for the realised volatilities and the realised
correlation. Figure (a) M=1 case, which corresponds to daily returns. No realised correlation is
computed in this case. Figure (b) M = 8 case. Figure (c) M = 72 for the Yen series. Figure
(d) M = 288. File: daily realised.ox.

Having computed realised variances , realised volatilities and correlations each day for a long
bivariate time series, one approach is now to regard that derived series as a daily time series.
An example is the time series of realised variances

M∑

j=1

y2j,1,
M∑

j=1

y2j,2, ...,
M∑

j=1

y2j,T .

This new series is of length T , the number of days in the sample. This is an important intellectual
step for we can now use time series methods on this derived series.

The correlograms for the daily time series of realised volatilities of these quantities are
displayed in Figure 6.11 for a variety of values of M . 250 lags are used in these figures which
correspond to measuring correlations over a one year period. Figure 6.11(a) shows the results
forM = 1. In this case the realised variances are simply squared daily returns while the realised
correlations do not make sense in this case and so are not plotted here. The correlogram
has the well know slow decay but starting at quite a low level. Figure 6.11(b) shows the
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effect of increasing M slightly to 8, now we are computing the realised quantities using 150
minute returns. The level of the correlation in the realised variances have jumped by a factor
of around 2, however the two autocorrelations are quite similar with moderately fast decays.
Indeed there does not seem to be much dependence in the series after around half a year. The
realised correlation is dramatically different. It has a much higher level of autocorrelation whose
decay seems to be roughly linear. The fact that the realised correlation has a higher level of
autocorrelation than the realised variances is interesting and we will name this the ABDL effect
after the authors, Torben Andersen, Tim Bollerslev, Frank Diebold and Paul Labys, who first
observed it.

Figure 6.11(c) shows the corresponding results for M = 72, which uses 20 minute returns.
All the autocorrelations correlations are boosted as M increases from 8, however the broad
story is the same. A clear observation is that the autocorrelations are becoming less jagged with
the increase in M . The same points appear with Figure 6.11(d) which uses M = 288. Using
these five minute return based statistics the correlations are now quite high and smooth. The
autocorrelation of the realised correlations, in particular, is very high.

Having observed some of the empirical features of the realised variances and correlations we
will now set out a theoretical framework for the study of the time series of realised quantities.
For the moment we focus on the realised variances.

We define sequences of realised and actual variances

[y∗M ]s:p =




M∑

j=1

y2j,s,
M∑

j=1

y2j,s+1, ...,
M∑

j=1

y2j,p



′

and τ s:p = (τ s, τ s+1, ..., τp)
′ ,

where we recall that τ i =
∫ h̄i
h̄(i−1) τ(u)du. The theory of realised variance implies that

√
M

h̄
([y∗M ]s:p − τ s:p) |τ [2]s:p

d→ N
{
0, 2diag

(
τ [2]s:p

)}
,

where τ
[2]
i =

∫ h̄i
h̄(i−1) τ

2(u)du.
Although estimating τ s:p by [y∗M ]s:p has attractions, the variance of the error is typically quite

large even when M is high. More precise estimators could be obtained by pooling neighbouring
time series observations for realised variances tend to be highly correlated through time. This
pooling will typically reduce the variance of the estimator, but will induce a bias.

To set up a formal framework for this discussion, abstractly write A as a matrix of non-
stochastic weights. Then

√
M

h̄
(A[y∗M ]s:p −Aτ s:p) |τ [2][ν]

d→ N
{
0, 2Adiag

(
τ [2]s:p

)
A′
}
.

Then consider the estimator
τ̂ s:p = cE (τ s:p) +A[y∗M ]s:p.

If we assume that the realised variances constitute a covariance stationary process then the
weighted least squares estimator of τ s:p sets

c = (I −A) ι

and

A =


Cov (τ s:p) +

2h̄E
(
τ
[2]
i

)

M
I



−1

Cov (τ s:p)

= [Cov ([y∗M ]s:p)]
−1Cov (τ s:p) .
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Of course, as M →∞ so A→ I and so

τ̂ s:p
p→ τ s:p.

Proposition (due to Bent Nielsen). A necessary and sufficient condition for A to be a non-
negative matrix (a matrix with non-negative elements) is that all the partial correlations amongst
the elements of τ s:p are non-negative.
Proof. Given in the Appendix.

In practice A has to be estimated from the data. Broadly this can be carried out in two
ways (i) by using empirical averages from the data, (ii) implying them from an estimated model.
Here we follow the former approach, delaying until the next subsection a discussion of a model
based method.

Thus if we have a large sample of a stationary process of realised variances and the process
is ergodic then we have that

̂
E
(
τ
[2]
i

)
=


 1

T

T∑

i=1

M

3h̄

M∑

j=1

y4j,i


 p→ E

(
τ
[2]
i

)
,

as T andM go to infinity. Likewise Cov ([y∗M ]s:p) can be estimated by averages of the time series
of realised variances. Hence A can be replaced by

Â =
[ ̂Cov ([y∗M ]s:p)

]−1 { ̂Cov ([y∗M ]s:p)−
̂

E
(
τ
[2]
i

)2h̄
M
I

}
,

which is a feasible weighting matrix. This will imply ĉ =
(
I − Â

)
ι and

τ̂ s:p = ĉ ̂E (τ s:p) + Â[y∗M ]s:p.

In the case where we estimate a single actual variance using a single realised variance se-
quence, so s = p, we have given the weights for the DM and Yen series in Table 6.1. This is
based on the entire time series sample of nearly 2500 days.

DM Yen

M Â ĉ Â ĉ
1 .182 .817 .229 .770
8 .449 .550 .513 .486
72 .778 .221 .789 .210
288 .877 .122 .906 .093

Table 6.1: Estimated weights for τ̂ i, the regression estimator of τ i which uses only [y∗M ]i and
an intercept. Results for the DM and Yen series against the Dollar. File: daily realised.ox.

We can see the results do not vary very much with the series being used. In particular, for
M = 8 then the estimator of τ i for the DM series would be

τ̂ i = .449[y∗M ]i + .550
1

T

T∑

j=1

[y∗M ]j .

Thus for small values of M the regression estimator puts a moderate weight on the realised
variance and more on the unconditional mean of the variances. As M increases this situation
reverses, but even for large values of M the unconditional mean is still quite highly weighted.
From now on we will solely focus on the DM series to make the exposition more compact.
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In the dynamic case the results are more complicated to present. Here we start by considering
estimating three actual variances using three contiguous realised variances — one lag, one lead
and the contemporaneous realised variance. Thus Â will be a 3× 3 matrix and ĉ a 3× 1 vector.
In the case of M = 8 we have that

{Cov ([y∗M ]1:3)}−1 =
1

1002




2.07 −.358 −.258
−.358 2.10 −.358
−.258 −.358 2.07


 ,

while

Â =



.418 .100 .072
.100 .409 .100
.072 .100 .418


 , ĉ =



.408
.388
.408


 .

Thus the second row of Â implies the estimator of τ i is

τ̂ i = .100[y∗M ]i−1 + .409[y∗M ]i + .100[y∗M ]i+1 + .388
1

T

T∑

j=1

[y∗M ]j .

Hence quite a lot of weight is put on neighbouring values of the realised variance and on the
intercept, although the weight on [y∗M ]i is not very much smaller than in the univariate case.
The corresponding result for M = 72 is

Â =



.712 .105 .053
.105 .684 .105
.053 .105 .712


 , ĉ =



.128
.105
.128


 .

This shows that the weighting on the diagonal elements of Â are much higher, while the size of
ĉ has fallen by a factor of around 4.

Figure 6.12 shows selected elements of Â for the case of estimating τ i using 9 realised vari-
ances, four lags and four leads together with [y∗M ]i. It displays the weights as a function of M
indicating how quickly the weights focus on [y∗M ]i as M increases. The legend of the Figure
also gives the value of the weight put on the unconditional mean of the realised variance. For
M = 72 it is .0553, which is much lower than in the trivariate case of .105 and univariate case
of .221.

Figure 6.13 shows a time series of realised variances for a number of values of M together
with the corresponding estimator τ̂ i based on nine observations, four leads, the current value
and four lags. The smoothed estimator seems to deliver sensible answers, with the results being
less sensitive to large values of the realised variances.

Table 6.2 reports, using the DM data,

1

T

T∑

i=1

([y∗M ]i − [y∗288]i)
2 ,

which is an empirical approximation to the mean square error of the realised variance estimator,
using [y∗288]i as a good proxy for τ i (the model based estimators would turn out to deliver
even more accurate estimators, but this could be interpreted as biasing the results towards
the model based approach and so here we use the raw realised variance). The Table shows a
rapid decline in the mean square error with M . It also shows the corresponding results for the
estimators τ̂ i, based on just a regression on a constant and [y∗M ]i, and τ̃ i, which uses [y∗M ]i−4,
[y∗M ]i−3, ...,[y∗M ]i+3,[y

∗
M ]i+4. The results reflect the fact that these adjusted estimators are much

more efficient than the realised variance, although the difference between using the time series
dynamics and the simple regression estimator is modest.
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Figure 6.12: Estimated weight vector for estimating τ i using [y∗M ]i−4,[y∗M ]i−3,...,[y∗M ]i+4 drawn
against lag length. Computed using the Dollar against the DM. Shows that as M increases the
weight on [y∗M ]i increases. Corresponding to these results is ĉ, which moves from .548, .222,
.0553, .026 as M increases through 1, 8, 72 to 288. File: daily realised.ox.

A similar style of argument could have been used based on the log-realised variances, where
the pooled estimator has the asymptotic distribution

√
M

h̄
(A log[y∗M ]s:p −A log τ s:p) |τ [2]s:p, τ s:p

d→ N




0, 2AE




τ
[2]
s /

(
τ2s
)

0 0

0
. . . 0

0 0 τ
[2]
p /

(
τ2p

)


A

′




,

which would allow us to choose A as a least squares estimator of log τ s:p repeating the above
argument. Weighting based on the log-realised variances has the advantage that the Monte
Carlo evidence suggests that the asymptotics for the log-realised variance is accurate with the
errors being approximately homoskedastic which suggests the weighting will be more effective.

The important result that we need to use this result is that





1

T

T∑

i=1

M
3h̄

∑M
j=1 y

4
j,i(∑M

j=1 y
2
j,i

)2





p→ E

(
τ
[2]
i

τ2i

)
,

and hence
̂log τ s:p = ĉE (log τ s:p) + Â log[y∗M ]s:p.
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Figure 6.13: The estimated τ i using realised variance and weighted version of
[y∗M ]i−4,[y∗M ]i−3,...,[y∗M ]i+4. Computed using the Dollar against the DM. (a) M=1, (b) M=8,
(c) M=144 and (d) M=288. File: daily realised.ox.

Of course
1

T

T∑

i=1

log[y∗M ]i
p→ E (log τ i) ,

hence we are left with just determining ĉ and Â. If we assume that the realised variances are a
covariance stationary process then the weighted least squares estimator of log τ s:p sets

ĉ =
(
I − Â

)
ι

and

Â =


Cov (log τ s:p) +

2h̄E
(
τ
[2]
i /τ

2
i

)

M
I



−1

Cov (log τ s:p)

= [Cov (log[y∗M ]s:p)]
−1Cov (log τ s:p) .

Of course for this estimator
̂log τ s:p → τ s:p

as M →∞, as expected.
This style of approach extends to the multivariate case where the focus is on estimating

the actual covariance matrix. Then it makes sense to use these regression approaches based
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DM Yen

[y∗M ]i (1− Â)E (τ i) + Â[y∗M ]i τ̂ i [y∗M ]i (1− Â)E (τ i) + Â[y∗M ]i τ̂ i
M = 1 .822 .175 .145 1.16 .198 .168
M = 8 .207 .0989 .0769 .186 .117 .0985
M = 72 .0377 .0345 .0317 .0424 .0406 .0378

Table 6.2: Mean square error of the realised variance and the regression estimator and the time
series estimators τ̂ i, which is based on [y∗M ]i−4, [y∗M ]i−3, ...,[y∗M ]i+3,[y

∗
M ]i+4. These are computed

using M = 1 , 8 and 72 . The true value is taken as [y∗M ]i for 288 . File: daily realised.ox.

on the logs of the realised variances and the Fisher transformation of the realised correlation.
The asymptotic theory of the realised covariation allows this approach to be feasible without
specifying a parametric model for the spot covariance matrix.

6.9.2 Model based approach

General discussion and example

Suppose we write (when they exist) ξ, ω2 and r, respectively, as the mean, variance and the
autocorrelation function of the continuous time stationary variance process τ . Here we will
discuss estimating and forecasting τ i based upon a parametric models for τ and the time series
of realised variances . Let us write ui = [y∗M ]i − τ i, then the asymptotic theory tells us that for
large M the ui are approximately uncorrelated with

Var
(√

Mui
)
→ 2h̄2

(
ω2 + ξ2

)

as M → ∞. Thus the second order properties of [y∗M ]i can be approximated. In particular
E ([y∗M ]i) = h̄ξ + o(1) and

Var ([y∗M ]i) = 2M−1h̄2
(
ω2 + ξ2

)
+Var(τ i) + o(1),

Cov([y∗M ]i, [y
∗
M ]i+s) = Cov(τ i, τ i+s) + o(1).

Var(τ i) and Cov(τ i, τ i+s) were given for all covariance stationary processes in the previous
Chapter on chronometers. In particular

Var (τ i) = 2ω2r∗∗(h̄) and Cov{τ i, τ i+s} = ω2♦r∗∗(h̄s), (6.94)

where
♦r∗∗(s) = r∗∗(s+ h̄)− 2r∗∗(s) + r∗∗(s− h̄), (6.95)

and

r∗(t) =
∫ t

0
r(u)du and r∗∗(t) =

∫ t

0
r∗(u)du. (6.96)

Thus, for a given model for the covariance stationary process τ we can compute the second order
properties of the time series of [y∗M ]i and τ i.

The above theory implies we can calculate asymptotically approximate best linear filtered,
smoothed and forecast values of τ i using standard regression theory. In particular suppose we
wish to estimate τ s:p using [y∗M ]s:p. Then the best linear estimator is

τ̂ s:p = Â {[y∗M ]s:p − h̄ξι}+ h̄ξι,
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where

Â = {Cov([y∗M ]s:p)}−1Cov (τ s:p, [y∗M ]s:p)

=
{
Cov (τ s:p) + 2M−1h̄2

(
ω2 + ξ2

)
I
}−1

Cov (τ s:p) .

This has a variance of

2M−1h̄2
(
ω2 + ξ2

)
ÂÂ′ +

(
I − Â

)
Cov (τ s:p)

(
I − Â

)′
.

Notice that as M → ∞ so Â → I and τ̂ s:p
p→ τ s:p. The simplest special case of this is where

s = p = i, that is we use a single realised variance to estimate actual variance. Then the theory
above suggests the efficient linear estimator is constructed using

X̂ =
{
r∗∗(h̄) +M−1h̄2

(
1 + ξ2/ω2

)}−1
r∗∗(h̄) ∈ [0, 1], (6.97)

which implies τ̂ i ≥ 0. In econometrics the corresponding τ̂ i is called the Meddahi regression
estimator of actual variance. It is always a consistent estimator of τ i, but is more efficient than
realised variance under the covariance stationarity assumptions.

In practice it is helpful to use the special structure of the Cov (τ s:p) in order to carry out
the required matrix inverse of Cov([y∗M ]s:p).

Special case

Suppose τ has the autocorrelation function r(t) = exp(−λ |t|). This implies that

E (τ i) = h̄ξ, Var (τ i) = 2ω2λ−2
(
e−λh̄ − 1 + λh̄

)
,

and
Cor{τ i, τ i+s} = de−λh̄(s−1), s = 1, 2, ..., (6.98)

where

d =
(1− e−λh̄)2

2 (e−λh̄ − 1 + λh̄)
≤ 1.

This implies τ i has the autocorrelation function of an ARMA(1, 1) model. Its autoregressive
root is e−λh̄, which will be typically close to one unless h̄ is very large, while the moving average
root θ is also determined by e−λh̄ but has to be found numerically. So for this case, in particular,
the Meddahi regression has

Â =
{
λ−2

(
e−λh̄ − 1 + λh̄

)
+M−1h̄2

(
1 + ξ2/ω2

)}−1
λ−2

(
e−λh̄ − 1 + λh̄

)

This argument extends to the case of a superposition where r(t) =
∑J
j=1wj exp(−λj |t|), then

τ i can be represented as the sum of J ARMA(1, 1) processes.
In calculating τ̂ s:p it is computationally convenient to place [y∗M ]i into a linear state space

representation for the filtering, smoothing and forecasting can be carried out using the Kalman

filter. In particular write α1i = (τ i − h̄ξ) and ui =
√
2M−1h̄2

(
ω2 + ξ2

)
v1i, then

[y∗M ]i = h̄ξ + (1 0)αi +

√
2M−1h̄2

(
ω2 + ξ2

)
v1i,

αi+1 =

(
φ 1
0 0

)
αi +

(
σσ
σσθ

)
vi,

(6.99)
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M ξ = 0.5, ξω−2 = 8 ξ = 0.5, ξω−2 = 4 ξ = 0.5, ξω−2 = 2

e−∆λ = 0.99 Smooth Predict [y∗M ]i Smooth Predict [y∗M ]i Smooth Predict [y∗M ]i
1 .0134 .0226 .624 .0209 .0369 .749 .0342 .0625 .998
12 .00383 .00792 .0520 .00586 .0126 .0624 .00945 .0211 .0833
48 .00183 .00430 .0130 .00276 .00692 .0156 .00440 .0116 .0208
288 .000660 .00206 .00217 .000967 .00343 .00260 .00149 .00600 .00347

e−∆λ = 0.9 Smooth Predict [y∗M ]i Smooth Predict [y∗M ]i Smooth Predict [y∗M ]i
1 .0345 .0456 .620 .0569 .0820 .741 .0954 .148 .982
12 .0109 .0233 .0520 .0164 .0396 .0624 .0259 .0697 .0832
48 .00488 .0150 .0130 .00707 .0260 .0156 .0108 .0467 .0208
288 .00144 .00966 .00217 .00195 .0178 .00260 .00280 .0338 .00347

Table 6.3: Exact mean square error (steady state) of the estimators of actual volatility. The first
two estimators are model based (smoother and predictor) and the third is [y∗M ]i. These measures
are calculated for different values of ω2 = Var(τ(t)) and λ, keeping ξ = E(τ(t)) fixed at 0.5.
File: ssf mse.ox.

where vi is a zero mean, unit variance, white noise sequence. The parameters φ, θ and σ2σ
represent the autoregressive root, the moving average root and the variance of the innovation
to this process. The extension to the superposition case is straightforward.

Table 6.3 reports the mean square error of the model based predictor and smoother of actual
variance, as well as the corresponding result for [y∗M ]i. The results in the left hand block of the
Table corresponds to the model which was simulated in Figure 6.1, while the other blocks vary
the ratio of ξ to ω2. The exercise is repeated for two values of λ.

The main conclusion from the results in Table 6.3 is that model based approaches can poten-
tially lead to very significant reductions in mean square error, with the reductions being highest
for persistent (low value of λ) variance processes with high values of ξω−2. Even for moder-
ately large values of M the model based predictor can be more accurate than realised variance ,
sometimes by a considerable amount. This is an important result from a forecasting viewpoint.
However, when there is not much persistence and M is very large, this result is reversed and
realised variance can be moderately more accurate. The smoother is always substantially more
accurate than realised variance , even when M is very large and there is not much memory in
variance. This suggests that model based methods may be particularly helpful in estimating
historical records of actual variance. Finally, we should place a number of caveats on these
conclusions. The above results represent a somewhat favourable setup for the model based ap-
proach. In the above calculations we have assumed knowledge of the second order properties
of variance while in practice we will have to build such a model and then estimate it, inducing
additional biases that we have not reported on. Of course, these criticisms do not apply to the
estimators in the previous subsection which were model free.

Estimating parameters: a numerical illustration

Estimating the parameters of continuous time stochastic volatility models is known to be difficult
due to our inability to compute the appropriate likelihood function. This has prompted the
development of a sizable collection of methods to deal with this problem. Here we advocate the
use of quasi-likelihood estimation methods based on the time series of realised variance . The
quasi-likelihood is constructed using the output of the Kalman filter. It is suboptimal for it does
not exploit the non-Gaussian nature of the variance dynamics, but it provides a consistent and
asymptotically normal set of estimators. This follows from the fact that the Kalman filter builds
the Gaussian quasi-likelihood function for the ARMA representation of the process, where the
noise in the representation is both white and strong mixing. This means we can immediately
apply the asymptotic theory results of Francq and Zaköıan (2000) in this context so long as τ(t)
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is strong mixing. Monte Carlo results reported in research papers indicate that the finite sample
behaviour of this approach is quite good. Further the estimation takes only a few seconds on a
modern notebook computer.

Empirical illustration

To illustrate some of these results we have fitted a set of superposition based models to the
realised variance time series constructed from the five minute exchange rate return data discussed
above. Here we use the quasi-likelihood method to estimate the parameters of the model — ξ,
ω2, λ1, ..., λJ and w1, ..., wJ . We do this for a variety of values ofM , starting withM = 6, which
corresponds to working with four hour returns. The resulting parameter estimates are given in
Table 6.4. For the moment we will focus on this case.

M J ξ ω2 λ1 λ2 λ3 w1 w2 Quasi-L BP
6 3 0.4783 0.376 0.0370 1.61 246 0.212 0.180 -113,258 11.2
6 2 0.4785 0.310 0.0383 3.76 — 0.262 — -113,261 11.3
6 1 0.4907 0.358 1.37 — — — — -117,397 302

18 3 0.460 0.373 0.0145 0.0587 3.27 0.0560 0.190 -101,864 26.4
18 2 0.460 0.533 0.0448 4.17 — 0.170 — -101,876 26.5
18 1 0.465 0.497 1.83 — — — — -107,076 443

144 3 0.508 4.79 0.0331 0.973 268 0.0183 0.0180 -68,377 15.3
144 2 0.509 0.461 0.0429 3.74 — 0.212 — -68,586 23.3
144 1 0.513 0.374 1.44 — — — — -76,953 765

Table 6.4: Fit of the superposition of J volatility processes for a SV model based on realised
variance computed using M = 6, M = 18 and M = 144. We do not record wJ as this is 1 minus
the sum of the other weights. Estimation method: quasi-likelihood using output from a Kalman
filter. BP denotes Box–Pierce statistic, based on 20 lags, which is a test of serial dependence in
the scaled residuals. File: ssf empirical.ox.

The fitted parameters suggests a dramatic shift in the fitted model as we go from J = 1
to J = 2 or 3. The more flexible models allow for a factor which has quite a large degree of
memory, as well as a more rapidly decaying component or two. A simple measure of fit of the
model is the Box–Pierce statistic, which shows a large jump from a massive 302 when J = 1,
down to an acceptable number for a superposition model.

To provide a more detailed assessment of the fit of the model we have drawn a series of graphs
in Figure 6.14 based on M = 8 and M = 144. Figure 6.14(a) draws the computed realised
variance [y∗M ], together with the corresponding smoothed estimate (based on J = 3) of actual
variance using the model. These are based on theM = 8 case. We can see that realised variance
is much more jagged than the smoothed quantity. These are quite close to the semi-parametric
estimator given in Figure 6.13. Figure 6.14(b) shows the corresponding autocorrelation function
for the realised variance series together with the corresponding empirical correlogram. We see
from this figure that when J = 1 we are entirely unable to fit the data, as its autocorrelation
function starts at around 0.6 and then decays to zero in a couple of days. A superposition of two
processes is much better, picking up the longer-range dependence in the data. The superposition
of two and three processes give very similar fits, indeed in the graph they are indistinguishable.

We next ask how these results vary as M increases. We reanalyse the situation when M =
144, which corresponds to working with ten minute returns. Figure 6.14(c) and (d) gives the
corresponding results. Broadly the smoother has not produced very different results, while the
J = 3 case now gives a slightly different fit to the Acf than the J = 2. The latter result is
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Figure 6.14: Results from M = 8 and M = 144. (a) Using M=8, first 50 observations of [y∗M ]i
& smoother. (b) Using M=8, Acf of [y∗M ]i and the fitted version for various values of J . (c)
Using M=144, first 50 observations of [y∗M ]i & smoother. (d) Using M=144, Acf of [y∗M ]i and
the fitted version for various values of J . File: daily timeseries.ox.

of importance, for as M increases the correlogram becomes more informative, allowing us to
discriminate between different models more easily.

Table 6.4 contains the estimated parameters for this problem. They suggest that moving
to a superposition of three processes has an important impact on the fit of the model. Again
the fitted models indicate variance has elements which have a substantial memory, while other
components are much more transitory. An important feature of this table is the jump in the
value of the estimated ω2 when we move to having J = 3. This is caused by the third component
which has a very high value of λ, which does not overly change the variance of actual variance.

6.10 Conclusion

In this Chapter we have reviewed some recent work on realised variance and covariation. In-
timately related to probabilistic ideas of quadratic variation and covariation, the quantities
have associated distribution theories allowing us to perform econometric inference on derived
quantities such as realised regressions, correlations and asset allocation.

The asymptotic theory for these realised quantities looks, at first sight, rather familiar from
variance and covariance estimation of Gaussian i.i.d. models, however a deeper understanding of
the results shows they are subtly different in interesting ways. Time series of realised quantities
can be pooled to allow us to reduce the amount of noise associated with estimated actual
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variances and covariances, however this typically biases the resulting estimator. We discuss how
to optimally trade the bias against the variance in a number of practical situations. We show
that time series of realised variances can be used to estimate parametric stochastic volatility
models in computationally simple and precise ways.

6.11 Bibliographical information

6.11.1 Realised variance and empirical finance

Realised variances and volatilities have been used in financial econometrics for many years.
Examples include Poterba and Summers (1986), Schwert (1989), Hsieh (1991), Taylor and Xu
(1997) and Christensen and Prabhala (1998). Sums of squared returns are often called realised
volatility in econometrics, while we use the name realised variance for that term and realised
volatility for the corresponding square root. The use of volatility to denote standard deviations
rather than variances is standard in financial economics. See, for example, the literature on
volatility and variance swaps, which are derivatives written on realised volatility or variance,
which includes Demeterfi, Derman, Kamal, and Zou (1999), Howison, Rafailidis, and Rasmussen
(2000) and Chriss and Morokoff (1999). We have chosen to follow this nomenclature rather than
the one more familiar in econometrics.

6.11.2 Quadratic variation, realised variance and econometrics

Under very weak assumptions the probability limit of [y∗M ]i has been known for many years using
the theory of quadratic covariation. Textbook expositions include Jacod and Shiryaev (1987, p.
55) and Protter (1990). A discussion of some of the economic implications of quadratic variation
is given in Back (1991).

Quadratic variation for semimartingales in the univariate case is discussed in the econometric
literature by independent and concurrent work by Comte and Renault (1998), Barndorff-Nielsen
and Shephard (2001a) and Andersen and Bollerslev (1998a). It was later developed and applied
systematically in some empirical work by Andersen, Bollerslev, Diebold, and Labys (2001a).
See also Barndorff-Nielsen and Shephard (2001a) and Andersen, Bollerslev, Diebold, and Labys
(2001b) for a discussion of the multivariate case and Andersen, Bollerslev, and Diebold (2002)
for an incisive survey of this area. Andersen, Bollerslev, Diebold, and Ebens (2001) discusses
the use of the multivariate theory in the context of equity prices.

A significant contribution made by the Andersen, Bollerslev, Diebold, et al research group
was their emphasis on looking at the conditional (on past data) mean of realised variance as a
good approximation to the conditional variance of returns. This line of thinking has not been
the focus of our attention, but is certainly stimulating from a modelling viewpoint.

The asymptotic distribution of realised variance was first given in Barndorff-Nielsen and
Shephard (2002c). A discussion of the use of this work on empirical data is given in Barndorff-
Nielsen and Shephard (2002d) while the small sample performance of the distribution theory is
discussed at length in Barndorff-Nielsen and Shephard (2003). This latter paper also studied
the asymptotics and finite sample behaviour of the log of realised variance.

Related to this work is that of Foster and Nelson (1996) (note also the work of Genon-Catalot,
Laredo, and Picard (1992), Florens-Zmirou (1993) and Hansen (1995)). In the univariate SV
case, where the volatility follows a scalar diffusion, they provided an asymptotic distribution
theory for an estimator of Σ(t), the spot (not integrated) variance (6.20).

Meddahi (2002) followed Barndorff-Nielsen and Shephard (2002c) in studying the moments
of the realised variance error. For a rather general model structure he showed that leverage made
no difference to the asymptotic moments of the error. In this paper he also suggested the model
based regression estimator of integrated variance that we call the Meddahi regression estimator
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(6.97). More sophisticated model based time series estimators were introduced by Barndorff-
Nielsen and Shephard (2002c) and further studied by Ysusi (2001). The use of this approach
to estimate the parameters of continuous time SV models appears in Barndorff-Nielsen and
Shephard (2002c) and Bollerslev and Zhou (2001). The development of a corresponding model
free approach seems to be new.

Other papers on various econometric aspects of realised variance includes Maheu and Mc-
Curdy (2001), Areal and Taylor (2002), Bollerslev and Forsberg (2002) and Fleming, Kirby, and
Ostdiek (2002).

6.11.3 Quadratic covariation

The theory of quadratic covariation is discussed in Jacod and Shiryaev (1987, p. 55) and Protter
(1990), while the economics is again emphasised in Back (1991). Andersen, Bollerslev, Diebold,
and Labys (2001a) informally discussed some of the econometric implications of this theory for
realised covariation, but this is carried out more precisely in Andersen, Bollerslev, and Diebold
(2002) and Barndorff-Nielsen and Shephard (2002e).

Some literature on the topic of SV based factor models includes Diebold and Nerlove (1989),
Meddahi and Renault (1996), Meddahi and Renault (2002), Pitt and Shephard (1999), Chib,
Nardari, and Shephard (1999), Barndorff-Nielsen and Shephard (2001a, Section 6.5) and Hubalek
and Nicolato (2001).

Barndorff-Nielsen and Shephard (2002e) derived the asymptotic distribution of realised co-
variation and implied the distribution theory for realised regression, correlation, etc.

6.11.4 Model based estimation of integrated variance

An important, but more intricate area, is where we use the covariance properties of the time
series of realised variances to improve the estimation of integrated variance. This was discussed
around the same time by Barndorff-Nielsen and Shephard (2002c) and Andreou and Ghysels
(2001), from rather different standpoints. Both sets of authors argued there were potentially
very significant efficiency gains to be made by using this approach. A important subsequent
contribution was Meddahi (2002) who extended some of the results of Barndorff-Nielsen and
Shephard (2002c) to cover the leverage case.
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Chapter 7

Power variation
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Abstract: This Chapter looks at a generalisation of quadratic variation called power varia-
tion. This is the probability limit of a scaled sum of powers of absolute returns. In financial
econometrics we use realised variance to approximate increments to quadratic variation, while
in the more general case we employ realised power variation. We are able to establish conditions
under which derive the asymptotic distribution for realised power variation. When we use low
powers, such as absolute values themselves, there is some hope that this measure of variability
may be more robust to jumps than realised variance. We provide a theory for why this should
be the case.

7.1 What is this Chapter about?

7.2 Introduction

Stochastic volatility processes play an important role in financial economics, generalising Brow-
nian motion to allow the scale of the increments (or returns in economics) to change through
time in a stochastic manner. We show such intermittency can be coherently measured using
sums of absolute powers of increments, which we name realised power variation. This paper
derives limit theorems for these measures, over a fixed interval of time, as the number of high
frequency increments goes off to infinity.

A referee has drawn our attention to an unpublished thesis by Etienne Becker (1998) that
develops a number of results that are closely related to those of the present paper. We outline
the relation to Becker’s work in the conclusion of this paper.

This paper has six other sections. In Section 2 we establish our idea of realised power
variation as well as define the regularity assumptions we need to derive our limit theorems.
Section 3 contains our main results, while the proofs of them are given in Section 4. Section 5
gives some examples of the processes covered by our theory, while a Monte Carlo experiment
to assess the accuracy of our limit theory approximations is conducted in Section 6. Finally,
Section 7 gives some concluding remarks including a discussion of the use of these ideas in other
areas of study, for instance turbulence and image analysis.

7.3 Models, notation and regularity conditions

We first introduce some notation for realised power variation quantities of an arbitrary semi-
martingale x. Let δ be positive real and, for any t ≥ 0, define

xδ(t) = x(bt/δc δ),

where bac for any real number a denotes the largest integer less than or equal to a. The process
xδ(t) is a discrete approximation to x(t). Further, for r positive real we define the realised power
variation of order r1 or realised r-tic variation of xδ(t) as

[xδ]
[r](t) =

M∑

j=1

|xδ (jδ)− xδ((j − 1)δ)|r

1The similarly named p-variation, 0 < p <∞, of a real-valued function f on [a, b] is defined as

sup
κ

∑
|f(xi)− f(xi−1)|p ,

where the supremum is taken over all subdivisions κ of [a, b]. If this function is finite then f is said to have
bounded p-variation on [a, b]. The case of p = 1 gives the usual definition of bounded variation.

This concept has been studied recently in the probability literature. See the work of, for example, Lyons (1994)
and Mikosch and Norvaisa (2000).
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=
M∑

j=1

|x (jδ)− x((j − 1)δ)|r (7.1)

where M =M(t) = bt/δc. Then, in particular, for M →∞, realised quadratic variation

[xδ]
[2](t)

p→ [x](t),

where [x] is the quadratic variation process of the semimartingale x. Note also that,

[xδ]
[2] = [xδ].

Henceforth, for simplicity of exposition, we fix t and take δ so that M = bt/δc is an integer
(and then δM = t).

Our detailed results will be established for the stochastic volatility (SV) model where basic
Brownian motion is generalised to allow the volatility term to vary over time and there to be a
rather general drift. Then the y∗ follows

y∗(t) = α(t) +

∫ t

0
σ(s)dw(s), t ≥ 0, (7.2)

where σ > 0 and α are assumed to be stochastically independent of the standard Brownian
motion w. Throughout this paper we will assume that the processes τ = σ2 and α are of
locally bounded variation. This implies that τ and α are locally bounded Riemann integrable
functions and that y∗ is a semimartingale with a continuous local martingale component. We
call σ the spot volatility process and α the mean or risk premium process. (For some general
information on processes y∗ of this type, see for example Ghysels, Harvey, and Renault (1996)
and Barndorff-Nielsen and Shephard (2001a)). By allowing the spot volatility to be random
and serially dependent, this model will imply its increments will exhibit volatility clustering
and have unconditional distributions which are fat tailed. This allows it to be used in finance
and econometrics as a model for log-prices. In turn, this provides the basis for option pricing
models which overcome some of the major failings in the Black-Scholes option pricing approach.
Leading references in this regard include Hull and White (1987), Heston (1993) and Renault
(1997). See also the recent work of Nicolato and Venardos (2001).

For the price process (7.2) the realised power variation of order r of y∗ is, at time t and
discretisation δ, [y∗δ ]

[r](t). Letting

yj(t) = y∗(jδ)− y∗((j − 1)δ)

we have that

[y∗δ ]
[r](t) =

M∑

j=1

|yj(t)|r .

We use the notation τ(t) = σ2(t) and

τ∗(t) =
∫ t

0
τ(s)ds

and, more generally, we consider the integrated power volatility of order r

τ r∗(t) =
∫ t

0
τ r(s)ds.

That τ r is Riemann integrable for every r > 0 follows from the assumed locally bounded variation
of τ and the fact, due to Lebesgue, that a bounded function f on a finite interval I is Riemann
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integrable on I if and only if the Lebesgue measure of the set of discontinuity points of f is
equal to 0 (see Hobson (1927, pp. 465–466), Munroe (1953, p. 174, Theorem 24.4) or Lebesgue
(1902)). In our case the latter property follows immediately from the bounded variation of τ
(any function of bounded variation is the difference between an increasing and a decreasing
function and any monotone function has at most countably many discontinuities).

Throughout the following, r denotes a positive number. Moreover we shall refer to the fol-
lowing conditions on the volatility and mean processes:

(V) The volatility process τ = σ2 is (pathwise) locally bounded away from 0 and
has, moreover, the property

p- lim
δ↓0

δ1/2
M∑

j=1

|τ r(ηj)− τ r(ξj)| = 0 (7.3)

for some r > 0 (equivalently for all r > 0)2 and for any ξj and ηj such that

0 ≤ ξ1 ≤ η1 ≤ δ ≤ ξ2 ≤ η2 ≤ 2δ ≤ · · · ≤ ξj ≤ ηj ≤Mδ = t.

(M) The mean process α satisfies (pathwise)3

lim
δ↓0

max
1≤j≤M

δ−1|α(jδ)− α((j − 1)δ)| <∞. (7.4)

These regularity conditions are quite mild.4 Of some special interest are cases where α is of
the form

α(t) =

∫ t

0
g(σ(s))ds,

for g a smooth function. Then regularity of τ will imply regularity of α.
Note that the assumptions allow the spot volatility to have, for example, deterministic diurnal

effects, jumps, long memory, no unconditional mean or to be non-stationary.

7.4 Results

Our main theoretical result is

Theorem 1 For δ ↓ 0 and r ≥ 1/2, under conditions (V) and (M),

µ−1r δ1−r/2[y∗δ ]
[r](t)

p→ τ r/2∗(t) (7.5)

and
µ−1r δ1−r/2[y∗δ ]

[r](t)− τ r/2∗(t)
µ−1r δ1−r/2

√
µ−12r vr[y

∗
δ ]
[2r](t)

L→ N(0, 1), (7.6)

2The equivalence follows on noting that for each j there exists an ωj with

inf
(j−1)δ≤s≤jδ

τ(s) ≤ ωj ≤ sup
(j−1)δ≤s≤jδ

τ(s)

such that ∣∣τr(ηj)− τr(ξj)
∣∣ = rωr−1j

∣∣τ(ηj)− τ(ξj)
∣∣

and then using that τ is pathwise bounded away from 0 and ∞.
3This condition is implied by Lipschitz continuity and itself implies continuity of α.
4Condition (V) is satisfied in particular if τ is of OU type and condition (M) is valid if, for instance, α is the

intOU process plus drift.
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where µr = E {|u|r} and vr = Var {|u|r}, with u ∼ N(0, 1).

This theorem tells us that, for δ ↓ 0, scaled realised power variation converges in probability
to integrated power volatility and follows asymptotically a normal variance mixture distribution
with variance distributed as

δµ−2r vrτ
r∗(t),

which is consistently estimated by the square of the denominator in (7.6). Hence the limit theory
is statistically feasible and does not depend upon knowledge of α or σ2.

Leading cases are realised quadratic variation, which is usually called realised volatility in
the finance and econometrics literature,

[y∗δ ]
[2](t) =

M∑

j=1

y2j (t),

in which case ∑M
j=1 y

2
j (t)− τ∗(t)√

2
3

∑M
j=1 y

4
j (t)

L→ N(0, 1), (7.7)

and realised absolute variation

[y∗δ ]
[1](t) =

M∑

j=1

|yj(t)| ,

when √
π/2

√
δ
∑M
j=1 |yj(t)| − σ∗(t)√

(π/2− 1) δ
∑M
j=1 y

2
j (t)

L→ N(0, 1). (7.8)

In the case of r = 2 the result considerably strengthens the well known quadratic vari-
ation result that realised quadratic variation converges in probability to integrated volatility∫ t
0 σ

2(s)ds — which was highlighted in concurrent and independent work by Andersen and
Bollerslev (1998a) and Barndorff-Nielsen and Shephard (2001a). The asymptotic distribution
of realised quadratic variation was discussed by Barndorff-Nielsen and Shephard (2002c) in the
special case where α(t) = µt + β

∫ t
0 σ

2(s)ds. To our knowledge the probability limit of (nor-
malised) realised absolute variation has not been previously derived, let alone its asymptotic
distribution.

Taking sums of squares of increments of log-prices has a very long tradition in financial
economics — see, for example, Poterba and Summers (1986), Schwert (1989), Taylor and Xu
(1997), Christensen and Prabhala (1998), Dacorogna, Muller, Olsen, and Pictet (1998), An-
dersen, Bollerslev, Diebold, and Labys (2001a) and Andersen, Bollerslev, Diebold, and Ebens
(2001). However, for a long time no theory was known for the behaviour of such sums out-
side the Brownian motion case. Since the link to quadratic variation has been made there
has been a remarkably fast development in this field. Contributions include Corsi, Zumbach,
Muller, and Dacorogna (2001), Andersen, Bollerslev, Diebold, and Labys (2001a), Andersen,
Bollerslev, Diebold, and Ebens (2001), Barndorff-Nielsen and Shephard (2002c), Andreou and
Ghysels (2001), Bai, Russell, and Tiao (2000), Maheu and McCurdy (2001), Areal and Tay-
lor (2002), Galbraith and Zinde-Walsh (2000), Bollerslev and Zhou (2001) and Bollerslev and
Forsberg (2002).

Andersen and Bollerslev (1998b) and Andersen and Bollerslev (1997) empirically studied
the properties of

∑M
j=1 |yj(t)| computed using sums of absolute values of intra-day returns on

speculative assets (many authors in finance have based their empirical analysis on absolute values
of returns — see, for example, Taylor (1986, Ch. 2), Cao and Tsay (1992), Ding, Granger, and
Engle (1993), West and Cho (1995), Granger and Ding (1995), Jorion (1995), Shiryaev (1999,
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Ch. IV) and Granger and Sin (1999)). This was empirically attractive, for using absolute values
is less sensitive to possible large movements in high frequency data. There is evidence that if
returns do not possess fourth moments then using absolute values rather than squares would be
more reliable (see, for example, the work on the distributional behaviour of the correlogram of
squared returns by Davis and Mikosch (1998) and Mikosch and Starica (2000)). However, the
approach was abandoned in their subsequent work reported in Andersen and Bollerslev (1998a),
Andersen, Bollerslev, Diebold, and Ebens (2001) and Andersen, Bollerslev, Diebold, and Labys
(2001a) due to the lack of appropriate theory for the sum of absolute returns as δ ↓ 0, although
recently Andreou and Ghysels (2001) have performed some interesting Monte Carlo studies in
this context, while Shiryaev (1999, pp. 349–350) and Maheswaran and Sims (1993) mention
interests in the limit of sums of absolute returns. Our work provides a theory for the use of
sums of absolute returns.

7.5 Proofs

Since the mean and volatility processes α and τ are jointly independent of the Brownian motion
w we need only argue conditionally on (α, τ). Define αj , τ j and σj by

αj = α(jδ)− α((j − 1)δ),

τ j = τ∗(jδ)− τ ∗((j − 1)δ)

and
σj =

√
τ j .

As a preliminary step we show

Lemma 1 For δ → 0,
δ1−r[τ∗δ ]

[r](t)→ τ r∗(t), (7.9)

pathwise.

Proof By the boundedness of τ(t) we have that for every j = 1, ...,M there exists a constant
θj such that

inf
(j−1)δ≤s≤jδ

τ(s) ≤ θj ≤ sup
(j−1)δ≤s≤jδ

τ(s)

and
τ j = θjδ, (7.10)

and using this and the Riemann integrability of τ r(t) we obtain

δ1−r[τ∗δ ]
[r] = δ1−r

M∑

j=1

τ rj

=
M∑

j=1

(τ j/δ)
rδ

=
M∑

j=1

θrjδ

→
∫ t

0
τ r(s)ds

= τ r∗(t).
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It is now convenient to write y∗(t) as

y∗(t) = α(t) + y∗0(t),

where

y∗0(t) =
∫ t

0
σ(s)dw(s)

and to introduce
y0j = y∗0(jδ)− y∗0((j − 1)δ).

The joint law of y01, ..., y0M is equal to that of v1, ..., vM where

vj = σjuj

and u1, ..., uM are i.i.d. standard normal and independent of the process σ. It follows that

[y∗0δ]
[r](t)

L
=

M∑

j=1

τ
r/2
j |uj |r . (7.11)

The conditional mean and variance of [y∗0δ]
[r](t) are then

E{[y∗0δ][r](t)|τ} = µr

M∑

j=1

τ
r/2
j = µr[τ

∗
δ ]
[r/2](t) (7.12)

and

Var{[y∗0δ][r](t)|τ} = vr

M∑

j=1

τ rj = vr[τ
∗
δ ]
[r](t). (7.13)

Hence, letting
D0 = µ−1r [y∗0δ]

[r](t)− [τ∗δ ]
[r/2](t)

we have
E{D0|τ} = 0

and
Var{D0|τ} = µ−2r vr[τ

∗
δ ]
[r](t).

By Lemma 1 as δ → 0,
δ1−rVar{D0|τ} → µ−2r vrτ

r∗(t)

indicating the validity of

Proposition 1 For δ → 0,

δ(1−r)/2
µ−1r [y∗0δ]

[r](t)− [τ∗δ ]
[r/2](t)√

µ−2r vrτ r∗(t)

L→ N(0, 1). (7.14)

Proof To establish this proposition we recall Taylor’s formula with remainder term:

f(x) = f(0) + f ′(0)x+ x2
∫ 1

0
(1− s)f ′′(sx)ds. (7.15)
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By (7.11) and (7.12) we find, using (7.15), that the conditional cumulant transform of D0 is
of the form

log E{exp(iζD0)|τ} = ζ2
M∑

j=1

τ rj

∫ 1

0
(1− s)κ′′r (τ

r/2
j ζs)ds

= ζ2δr
M∑

j=1

θrj

∫ 1

0
(1− s)κ′′r (δr/2θ

r/2
j ζs)ds,

where θj is given by (7.10) and κr denotes the cumulant transform of µ−1r |u|r for u a standard
normal random variable. Consequently,

log E{exp(iζδ(1−r)/2D0)|τ} =
1

2
ζ2δR

where

R = 2
M∑

j=1

θrj

∫ 1

0
(1− s)κ′′r (δ1/2θ

r/2
j ζs)ds.

The boundedness of τ on [0, t] implies

lim
δ↓0

δ1/2max
j
θ
r/2
j = 0

and hence, for δ ↓ 0,

δR → 2

∫ 1

0
(1− s)dsκ′′r (0) lim

δ↓0

M∑

j=1

θrjδ

= κ′′r (0)τ
r∗(t) = −µ−2r vrτ

r∗(t).

Therefore

log E{exp(iζδ(1−r)/2D0)|τ} = −
1

2
ζ2µ−2r vrτ

r∗(t) + o(1) (7.16)

and Proposition 1 follows.

Lemma 1 uses only the local boundedness and Riemann integrability of τ . Invoking condi-
tion (V) we may strengthen the result (7.9) as follows.

Lemma 2 Under condition (V) we have

δ1−r[τ∗δ ]
[r](t)− τ r∗(t) = op(δ

1/2).

Proof For each j there exists a number ψj such that

inf
(j−1)δ≤s≤jδ

τ(s) ≤ ψj ≤ sup
(j−1)δ≤s≤jδ

τ(s)

and ∫ jδ

(j−1δ)
τ r(s)ds = ψrjδ. (7.17)
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Using this and (7.10) we find

δ1−r[τ∗δ ]
[r](t)− τ r∗(t) = δ1−r

M∑

j=1

τ rj −
∫ t

0
τ r(s)ds

= δ
M∑

j=1

(θrj − ψrj), (7.18)

and the conclusion now follows from assumption (V).

Proposition 2 Under condition (V), for δ → 0,

δ1−r/2µ−1r [y∗0δ]
[r](t)− τ r/2∗(t)

δ1/2
√
µ−2r vrτ r∗(t)

L→ N(0, 1). (7.19)

Proof We may rewrite the left hand side of (7.14) as

δ1−r/2µ−1r [y∗0δ]
[r](t)− δ1−r/2[τ∗δ ][r/2](t)

δ1/2
√
µ−2r vrτ r∗(t)

=
δ1−r/2µ−1r [y∗0δ]

[r](t)− τ r/2∗(t)
δ1/2

√
µ−2r vrτ r∗(t)

+
δ1−r/2[τ∗δ ]

[r/2](t)− τ r/2∗(t)
δ1/2

√
µ−2r vrτ r∗(t)

and Lemma 2 then implies the result.

As an immediate consequence of Proposition 2 we have

Corollary 1 Under condition (V), for δ → 0,

δ1−rµ−12r [y
∗
0δ]

[2r](t)
p→ τ r∗(t).

In other words, when normalised, [y∗0δ]
[2r](t) provides a consistent estimate of τ r∗(t). Com-

bining this with (7.19) yields the conclusion of Theorem 1 for the special case where the mean
process α is identically 0.

The remaining task is to show that, to the order concerned, α does not affect the asymptotic
limit behaviour, provided conditions (V) and (M) hold. For this it suffices to show that, under
(V) and (M),

δ(1−r)/2
{
[y∗δ ]

[r](t)− [y∗0δ]
[r](t)

}
= op(1),

cf. Proposition 1.
We shall in fact prove the following stronger result.

Proposition 3 Under conditions (V) and (M),

δ−r/2
{
[y∗δ ]

[r](t)− [y∗0δ]
[r](t)

}
= Op(1).
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Proof Let
τ = inf

0≤s≤t
τ(s) and τ̄ = sup

0≤s≤t
τ(s)

and
γj = δ−1αj

and note that (pathwise for (α, τ)), by assumption,

0 < τ ≤ τ̄ <∞,

implying
0 < min

j
θj ≤ max

j
θj <∞,

while, due to assumption (M), there exists a constant c for which

max
j
|γj | ≤ c,

whatever the value of M .
We have

[y∗δ ]
[r](t)− [y∗0δ]

[r](t) =
M∑

j=1

(|αj + y0j |r − |y0j |r)

=
M∑

j=1

(
|δγj + δ1/2θ

1/2
j uj |r − |δ1/2θ1/2j uj |r

)

= δr/2
M∑

j=1

θ
r/2
j

{∣∣∣
(
γj/θ

1/2
j

)
δ1/2 + uj

∣∣∣
r
− |uj |r

}

and hence

δ−r/2
{
[y∗δ ]

[r](t)− [y∗0δ]
[r](t)

} L
=

M∑

j=1

θ
r/2
j hr

(
u0j ; γj/θ

1/2
j

)

where
hr(u; ρ) =

∣∣∣ρδ1/2 + u
∣∣∣
r
− |u|r.

The conclusion of Proposition 3 now follows from Lemma 3 below.

Lemma 3 For r ≥ 1/2, u a standard normal random variable and ρ constant,

E{hr(u; ρ)} = O(δ)

and
Var{hr(u; ρ)} = O(δ).

Proof With ϕ denoting the standard normal density we obtain

E{|ρδ1/2 + u|r} =

∫ ∞

−∞

∣∣∣ρδ1/2 + x
∣∣∣
r
ϕ(x)dx

=

∫ ∞

−∞
|x|rϕ(x)eρδ1/2xdxe−ρ2δ/2

=

∫ ∞

−∞
|x|rϕ(x)eρδ1/2xdx+O(δ)

= E{|u|r}+
∫ ∞

−∞
|x|rϕ(x)

(
eρδ

1/2x − 1
)
dx+O(δ),
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i.e.

E{hr(u; ρ)} = δ1/2
∫ ∞

−∞
x|x|rϕ(x)e

ρδ1/2x − 1

δ1/2x
dx+O(δ)

= δ1/2
∫ ∞

−∞
x|x|rϕ(x)e

ρδ1/2x − 1− ρδ1/2x
δ1/2x

dx+ ρδ1/2
∫ ∞

−∞
x |x|r ϕ(x)dx+O(δ)

= O(δ).

Furthermore,

E{hr(u; ρ)2} = E{h2r(u; ρ)}+ 2E
{
|u|r

(
|u|r − |ρδ1/2 + u|r

)}

= O(δ) + 2E
{
|u|r

(
|u|r − |ρδ1/2 + u|r

)}
(7.20)

by the previous result. Here

E{|u|r|ρδ1/2 + u|r} =

∫ ∞

−∞
|x|r|ρδ1/2 + x|rϕ(x)dx

=

∫ ∞

−∞
|x2 − 1

4
ρ2δ|rϕ(x)e 12ρδ1/2xdxe− 18ρ2δ

=

∫ ∞

−∞
|x2 − 1

4
ρ2δ|rϕ(x)e 12ρδ1/2xdx+O(δ)

=

∫ ∞

−∞
|x|2rϕ(x)e 12ρδ1/2xdx+O(δ)

+

∫ ∞

−∞

(∣∣∣∣x
2 − 1

4
ρ2δ

∣∣∣∣
r

− |x2|r
)
ϕ(x)e

1
2
ρδ1/2xdx. (7.21)

Now, for a and b nonnegative numbers we have the inequality

|br − |b− a|r| ≤





ar for 0 ≤ b ≤ a

rbr−1a for b > a.
(7.22)

Using this and r ≥ 1/2 we find that

∣∣∣∣
∫ ∞

−∞

(
|x2 − 1

4
ρ2δ|r − |x2|r

)
ϕ(x)e

1
2
ρδ1/2xdx

∣∣∣∣

≤
(
r

4
ρ2δ

)r ∫

|x|≤ρδ1/2/2
ϕ(x)e

1
2
ρδ1/2xdx+

r

4
ρ2δ

∫ ∞

−∞
|x|2(r−1)ϕ(x)e 12ρδ1/2xdx (7.23)

= O(δ). (7.24)

Thus, combining (7.20), (7.21) and (7.24),we have

E{hr(u; ρ)2} = 2

{∫ ∞

−∞
|x|2rϕ(x)dx−

∫ ∞

−∞
|x|2rϕ(x)e 12ρδ1/2xdx

}
+O(δ)

= 2

∫ ∞

−∞
|x|2rϕ(x)

(
1− e 12ρδ1/2x

)
dx+O(δ)

= 2δ1/2
∫ ∞

−∞
x|x|2rϕ(x)1− e

1
2
ρδ1/2x

δ1/2x
dx+O(δ)

= O(δ),

as was to be shown.
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7.6 Examples

The following two examples show that conditions (V) and (M) are satisfied for OU models
used by Barndorff-Nielsen and Shephard (2001a) in the context of SV models.

Example 1 Volatility process τ of OU type. Without loss of generality we suppose that τ
satisfies the equation

τ(t) = e−λtτ(0) +
∫ t

0
e−λ(t−s)dz(λs),

where z is a subordinator, i.e. a positive Lévy process, which is referred to as the BDLP
(background driving Lévy process).

The number of jumps of the BDPL z on the interval [0, t] is at most countable. Let z1 ≥
z2 ≥ ... denote the jump sizes given in decreasing order and let u1, u2, ... be the corresponding
jump times. Then, for any s ∈ [0, t],

τ(s) = τ(0)e−λs +
∞∑

n=1

zne(s;un),

where
e(s;u) = e−λ(s−u)1[u,t](s)

and we have
M∑

j=0

|e(jδ;u)− e((j − 1)δ;u)| ≤ 2.

Hence
M∑

j=0

|τ(jδ)− τ((j − 1)δ)| ≤ 2

{
τ(0) +

∞∑

n=1

zn

}
= 2 {τ(0) + z(λt)} ,

showing that condition (V) is amply satisfied.

Example 2 OU volatility and intOU risk premium In this particular case the volatility
process τ is as in the previous example and the mean process is of the form

α(t) = µδ + βτ ∗(t),

where µ and β are arbitrary real parameters.
We then have

αj = δ{µ+ βθj},
implying

max
1≤j≤M

δ−1|α(jδ)− α((j − 1)δ)| ≤ |µ|+ |β|τ̄ <∞,

so that condition (M) is indeed satisfied.

7.7 A Monte Carlo experiment

7.7.1 Multiple realised power variations

We have stated the definition and results for realised power variation for a single fixed t. It
is clear that the theory can also be applied repeatedly on non-overlapping increments to the
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process. Let us write ∆ > 0 as a time interval and focus on the n-th such interval. Then define
the intra-∆ increments as

yj,n = y∗
(
(n− 1)∆ +

∆j

M

)
− y∗

(
(n− 1)∆ +

∆(j − 1)

M

)
, δ = ∆M−1,

which allows us to construct the n-th realised power variation

[y∗δ ]
[r]
n =

M∑

j=1

|yj,n|r .

The implication is that

[
µ−1r

(
∆M−1

)1−r/2
[y∗δ ]

[r]
n

]
−
∫ n∆
(n−1)∆ σ

r(s)ds

µ−1r (∆M−1)1−r/2
√

vr
µ2r

[y∗δ ]
[2r]
n

L→ N(0, 1).

An important observation is that the realised power variation errors

{
µ−1r

(
∆M−1

)1−r/2
[y∗δ ]

[r]
n

}
− σ[r]n , (7.25)

where σ
[r]
n , the actual power volatility, is defined as

σ[r]n = σr∗ (n∆)− σr∗ ((n− 1)∆) , where σr∗(t) =
∫ t

0
σr(s)ds.

will be asymptotically uncorrelated through n, although they will not be independent.

7.7.2 Simulated example

Realised power variation and actual power volatility

The above distribution theory says in particular that realised power variation error will converge
in probability to zero as δ ↓ 0. To see the magnitude of this error we have carried out a simulation.
This will allow us to see how accurate our asymptotic analysis is in practice. Throughout we
have set the mean process α(t) to zero. Our experiments could have been based on the familiar
constant elasticity of variance (CEV) process which is the solution to the SDE

dσ2(t) = −λ
{
σ2(t)− ξ

}
dt+ ωσ(t)ηdb(λt), η ∈ [1, 2],

where b is standard Brownian motion uncorrelated with w. Of course the special cases of η = 1
delivers the square root process, while when η = 2 we have Nelson’s GARCH diffusion. These
models have been heavily favoured by Meddahi and Renault (2002) in the context of SV models.
Instead of this we will work with the non-Gaussian Ornstein-Uhlenbeck process, or OU process
for short, which is the solution to the stochastic differential equation

dσ2(t) = −λσ2(t)dt+ dz(λt), (7.26)

where z is a subordinator (that is a Lévy process with non-negative increments). These models
have been developed in this context by Barndorff-Nielsen and Shephard (2001a). In Figure

7.1(a), (c), (e) we have drawn a curve to represent a simulated sample path of σ
[2]
n from an OU

process where z(t) has a Γ(t4, 8) marginal distribution, λ = − log (0.99) and ∆ = 1, along with
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Figure 7.1: Simulation from an OU-Γ(4, 8) process. Drawn is σ
[2]
n and σ

[1]
n against time, together

with their associated realised power variation estimators. Graph is computed for M = 12, 48
and 144.

the associated realised quadratic variation (depicted using crosses) computed using a variety of
values of M . It is helpful to keep in mind that

E
(
σ2(t)

)
= E(z(1)) =

1

2
and Var

(
σ2(t)

)
=

1

2
Var (z(1)) =

1

32
.

The corresponding results for σ
[1]
n and realised absolute variation is given in Figure 7.1(b), (d),

(f). We see that as M increases the precision of realised power variation increases, while Figure
7.1 shows that the variance of the realised power variation increases with the level of volatility.
This is line with the prediction from the asymptotic theory, for the denominator increases with
the level of volatility.

QQ plots

To assess the finite sample performance of the asymptotic distributions of the realised quadratic
and absolute variation we have constructed some QQ plots based upon the standardised errors
(7.7) and (7.8). Our main focus will be on the absolute variation case, leaving the quadratic
case to be covered in detail in a follow up paper by Barndorff-Nielsen and Shephard (2003).
However, to start off with we give both cases, in order to allow an easy comparison.
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Figure 7.2: Plots for the realised quadratic variation error and the realised absolute variation
error plus twice their asymptotic standard errors. (a) and (b) have M = 12, while (c) and (d)
has M = 48 and while (e) and (f) has M = 144. Corresponding QQ plots are on the right hand
side, based on the standardised realised quadratic variations and the realised absolute variations.

Figure 7.2 gives QQ plots based on the simulation experiment reported in the previous
subsection, with a sample size of 10, 000. Again we vary M over 12, 48 and 144. The left hand

side graphs give the realised quadratic variation errors [y∗δ ]
[2]
n − σ

[2]
n as well as plus and minus

two times the asymptotic standard errors. The plot is based on the first 600 simulations. This
graph shows how much the standard errors change through time. This continues to happen with
large values of M and reflects the stochastic denominator in the limit theory.

The middle graphs of Figure 7.2 give the corresponding realised absolute variation errors
√
πδ

2

M∑

j=1

|yj,n| − σ[1]n ,

together with twice standard error bounds. The conditional standard errors are more stable
through time, especially when M is small. The unconditional variance of the errors is approxi-
mately

δ
(
µ−21 − 1

)
∆E

{
σ2(t)

}
.

The right hand side of Figure 7.2 gives the associated QQ plots for the standardised residuals
from the realised quadratic and absolute variation measures. These use all 10, 000 observations.
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The results are clear, in comparison with the asymptotic limit laws both random variables
are too fat tailed in small samples, with this problem reducing as M increases. The realised
absolute variation version of the statistic has much better finite sample behaviour, while the
realised quadratic variation is quite poorly behaved.

Logarithmic transformation

The realised power variation [y∗δ ]
[r](t) is the sum of non-negative items and so is non-negative. It

would seem sensible to transform this variable to the real line in order to improve its finite sample
performance. Hence we use the standard logarithmic transformation (that is for a consistent

estimator θ̂ of θ we approximate log(θ̂) by log(θ)+
(
θ̂ − θ

)
/θ, hence the asymptotic distribution

of θ̂ − θ can be used to deduce the asymptotic distribution of log(θ̂) − log(θ)). For the general
realised power variation this implies

log
[
µ−1r δ1−r/2[y∗δ ]

[r](t)
]
− log

∫ t
0 σ

r(s)ds

µ−1r δ1−r/2
√

vr
µ2r

[y∗
δ
][2r](t)

[µ−1r δ1−r/2[y∗
δ
][r](t)]

2

L→ N(0, 1). (7.27)

Referring to the denominator we should note that

µ−12r δ
1−r[y∗δ ]

[2r](t)
[
µ−1r δ1−r/2[y∗δ ]

[r](t)
]2
L→

∫ t
0 σ

2r(s)ds
{∫ t

0 σ
r(s)ds

}2 ≥ 1,

by Jensen’s inequality. In the realised absolute variation case (7.27) simplifies to

log

{√
πδ
2

∑M
j=1 |yj(t)|

}
− log

∫ t
0 σ(s)ds

√√√√δ
(
π
2 − 1

) ∑M

j=1
y2j (t){√

πδ
2

∑M

j=1
|yj(t)|

}2

L→ N(0, 1). (7.28)

Using the same simulation setup as that employed in the previous subsection, we plot in
Figure 7.3 the log version of the realised absolute variation error

log





√
πδ

2

M∑

j=1

|yj,n|



− log σ[1]n ,

plus and minus twice the corresponding standard errors using (7.28). The standard errors have
now stabilised, almost not moving with n. This is not surprising for t times

t−1
∫ t
0 σ

2(s)ds
{
t−1

∫ t
0 σ(s)ds

}2

is empirically very close to one for small values of t while for large t it converges to

E
{
σ2(t)

}

[E {σ(t)}]2
,

so long as the volatility process is ergodic and the moments exist.
The corresponding QQ plots in Figure 7.3 have also improved, with the normality approxima-

tion being accurate even for moderate values of M . This result carries over to wider simulations
we have conducted.
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Figure 7.3: Plots for the log transform of the realised absolute variation. Left hand plots are the
errors plus and minus twice their asymptotic standard errors. Corresponding QQ plots are on
the right hand side, based on the standardised log realised absolute variations.

7.8 Conclusions

This paper has introduced the idea of realised power variation, which generalises the concept
of realised volatility. The asymptotic analysis we provide, for δ ↓ 0, represents a significant
extension of the usual quadratic variation result. Further, we provide a limiting distribution
theory which considerably strengthens the consistency result and allows us to understand the
variability of the difference between the realised power variation and the actual power volatility.

We have seen that when we take a log transformation of the realised power variation then the
finite sample performance of the asymptotic approximation to the distribution of this estimator
improves and seems to be accurate even for moderate values of M .

Our motivation for the study reported in this paper came originally from mathematical
finance and financial econometrics where volatility is a key object of study. However, stochastic
models in the form of a ‘signal’ α plus a noise term e where e is (conditionally) Gaussian with
a variance that varies from ‘site’ to ‘site’ are ubiquitous in the natural and technical sciences,
and we believe that results similar to those discussed here will be of interest for applications in
a variety of other fields, for instance in turbulence and in spatial statistics.

Finally, the thesis of Becker (1998), briefly referred to in the Introduction, consists in a
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comprehensive study of the limit behaviour as M →∞ of processes of the type

yM (t) =

[Mt]∑

j=1

f

[
j − 1

M
,

1√
M

{
x

(
j

M

)
− x

(
j − 1

M

)}]

where f is function of two variables and x denotes a Brownian semimartingale (of a certain
kind, see below). The diffusion case is especially important. Extensions to general continuous
or purely discontinuous semimartingales and even combination of the two are presented. The
thesis is partly based on an earlier report by Jacod (1992), see also Delattre and Jacod (1997)
and Florens-Zmirou (1993). Both x and f may be multidimensional, and generalisations to
cases where not only the increment of x over the j-th interval but the whole trajectory over that
interval occur in the second argument of f are also considered.

We shall not here attempt to indicate the precise results and the accompanying regularity
conditions of Becker’s thesis in any detail, but we wish to underline that the setting of his study
is extremely general. Of immediate interest in connection with the present paper are his results
when x is a Brownian semimartingale. More specifically, Becker considers the case where x is of
the form

x(t) =

∫ t

0
c(s)ds+

∫ t

0
σ(s)dw(s)

where w is Brownian motion and c and σ are predictible and subject to restrictions on their
variational behaviour. He shows, in particular, that yM (t) after a suitable centering converges
to a stochastic process which is representable as a certain type of stochastic integral where the
integration is with respect to a ‘limit martingale-measure tangential to x’. A key point of our
present work is that for the kind of functions f we consider, i.e. absolute powers, we are able
to identify the limit behaviour as mixed Gaussian and, crucially for the statistical applicability,
from this to establish a standard normal limit statement using random rescaling by observable
scale factors.

7.9 Bibliographical information
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7.10 Generalising results on realised power variation

For continuous sample path SV models, that is time deformed Brownian motion by a general
chronometer, we can find the probability limit and asymptotic distribution of realised power
variation. An important question is whether we can extend these ideas outside the continuous
sample path case? One approach to dealing with this question is to add to the SV model an
independent process which has jumps, another is to replace the Brownian motion assumption
by a more general process which allows for the possibility of jumps.

In this section we analyse the latter problem, replacing Brownian motion with a stable
process.

TO BE ADDED: remarks about what happens if instead we replace Brownian motion by a
NIG process.

7.10.1 Stable innovations

Setup

Suppose that z is a symmetric α-stable process with 0 < α < 2. This means it has the cumulant
function

C{ζ ‡ z(t)} = log Eeiζz(t) = −t|ζ|α.
Except for the boundary case of α = 2, this distribution has the empirically unappealing feature
that the variance of z(1) is infinity. The density of this variable is unknown in general, with
exceptions being the zero mean, variance of 2 Gaussian variable (α = 2), the Cauchy variable
(α = 1) and the Lévy variable (α = 1/2). Importantly, all stable processes are semimartingales.

This process is representable by subordination as

z(t)
law
= b(q(t)),

where q is the positive α/2-stable subordinator with kumulant function

K̄{θ ‡ q(t)} = log Ee−θq(t) = −t(2θ)α/2.

When α = 2, q(t) is simply a drift 2t, otherwise q(t) is a jump process. The z(t) process inherits
these properties, with only the α = 2 case having a continuous sample path.

Assume that τ is locally bounded and that τ⊥⊥z. Then a stable-SV model

y∗(t) =
∫ t

0
σ(s)dz(s),

is well-defined for all t ≥ 0. This process has discontinuous sample paths except in the case
where α = 2. This structure has the disadvantage that the unconditional variance of the price
process does not exist, whatever the volatility process we use.

We define the increment to the price process over an interval of length δ > 0 as

yj = y∗(jδ)− y∗((j − 1) δ),

then the following result holds:

Remark 7.1

yj
law
=

(∫ jδ

(j−1)δ
σα(s)ds

)1/α

z(1). (7.29)
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Proof. Let f be some deterministic function, then for any Lévy processes z we have that

Cum

{
ζ ‡
∫ ∞

0
f(s)dz(s)

}
=

∫ ∞

0
Cum{f(s)ζ ‡ z(1)}ds,

by using the Lévy-Khintchine representation (e.g. Barndorff-Nielsen and Shephard (2001b, p.
287)). This gives that, conditionally on σ,

Cum

{
ζ ‡
∫ t

0
σ(s)dz(s)

}
=

∫ t

0
Cum{σ(s)ζ ‡ z(1)}ds.

Then, since Cum{ζ ‡ z(1)} = −|ζ|α we obtain

Cum{ζσ(s) ‡ z(1)} = −|σ(s)ζ|α = −σα(s)|ζ|α,

i.e.

Cum

{
ζ ‡
∫ t

0
σ(s)dz(s)

}
= −

∫ t

0
σα(s)ds|ζ|α

= −
∣∣∣∣∣

(∫ t

0
σα(s)ds

)1/α

ζ

∣∣∣∣∣

α

= Cum

{(∫ t

0
σα(s)ds

)1/α

ζ ‡ z(1)
}

= Cum

{
ζ ‡
(∫ t

0
σα(s)ds

)1/α

z(1)

}
.

For realised power variation we look at sums of powers of absolute returns. This means we
focus on, from (7.29),

|yj |r law=
(∫ jδ

(j−1)δ
σα(s)ds

)r/α
|z(1)|r.

We may reexpress this as

|yj |r law=
(∫ jδ

(j−1)δ
σα(s)ds

)r/α
|zj |r,

where z1, ..., zM are i.i.d. with the same distribution as z(1), or equivalently, using the subordi-
nation property, as

|yj |r law=
(∫ jδ

(j−1)δ
σα(s)ds

)r/α
q
r/2
j |uj |r,

where the q1, ..., qM are i.i.d., with the same law as q(1), and independent of u1, ..., uM which
are i.i.d. standard normal.

In view of these representations of |yj |r it would be rather simple to give a complete descrip-
tion of the various possible limiting behaviours of [y∗δ ]

[r] as δ → 0. Here we shall only discuss
some particular cases.

Quadratic variation

For r = 2 we have that realised variance is

[y∗δ ](t)
law
=





M∑

j=1

|uj |α
∫ jδ

(j−1)δ
σα(s)ds





2/α

q(1).
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Under the usual type of regularity condition on τ the term in braces satisfies, conditionally on
τ , as δ ↓ 0

M∑

j=1

|uj |α
∫ jδ

(j−1)δ
σα(s)ds

p→ µατ
α/2∗(t)

with µc = E{|uj |c}. Consequently the quadratic variation converges to

[y∗](t)
law
= {µατα/2∗(t)}2/αq(1),

where

τα/2∗(t) =
∫ t

0
σα(s)ds,

is the integrated power volatility.

Remark 7.2 When α = 2, then q(t) = 2t and so µ2 = E{|uj |2} = 1

[y∗](t)
law
= 2τ∗(t), where τ ∗(t) =

∫ t

0
σ2(s)ds

The 2 appears as the stable variable has a variance of 2 over a unit interval of time when α = 2.

Power variation

The probability limit of realised variance, that is quadratic variation, is quite complicated in
the stable-SV case. It turns out that much simpler and more powerful results are available if we
use realised power variation instead of realised variance.

The moments of |z(1)|r exist up to, but not including, order (1+α− r)/r. Hence, still given
τ , if r < (1 + α)/2 then

δ1−r/α[y∗δ ]
[r](t)

p→ µαrτ
r/2∗(t), (7.30)

where µα,r = E{|z(1)|r}. This provides a simple generalisation of the use of quadratic variation
for Brownian motion based SV models for then r = 2 and

[y∗δ ]
[2](t)

p→ τ∗(t),

exactly.
As α ≤ 2 it implies we must use r ≤ 2 for the limit (7.30) to hold. In particular as α falls,

so must r in order for us to be able to analyse the problem. Overall, this is a powerful result
for it means that by differentiating realised power variation we reveal the spot volatility even in
the stable-SV case. However, the observation has an important limitation for it implies that we
need to know the value of α to use it, for the normalisations involve δ1−r/α and µα,r. We will
see why this result remains important in a moment, even though the above is a limitation.

And in case r < min{α, (1 + α)/3} we have the stronger result that

δ1−r/αµ−1α,r[y
∗
0δ]

[r](t)− τ r/2∗(t)
δ1/2

√
µ−2α,rvα,rτ r∗(t)

law→ N(0, 1) (7.31)

both conditionally and unconditionally; here vα,r = Var{|z(1)|r}. Of course in practice the above
limit theory is infeasible as we do not know the value of τ r∗(t), however so long as r < (1+α)/4
we can use formula (7.30) to replace τ r∗(t) by a feasible quantity.
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Asymptotic negligibility

A limitation with the above limit theorems is that we need to know the value of α. However, in
practice that would be typically unavailable to use. In this part of this paper we show that in
some sense the realised absolute variation is, for r < 2, in any case small for stable-SV models,
compared to the same quantity for Browian-SV models.

In the Brownian-SV case we have proved elsewhere that

δ1−r/2µ−12,r [y
∗
0δ]

[r](t)− τ r/2∗(t)
δ1/2

√
µ−22,rv2,rτ

r∗(t)

law→ N(0, 1).

Thus, in particular that
δ1−r/2µ−12,r [y

∗
0δ]

[r](t)
p→ τ r/2∗(t).

In the stable-SV case r = 1

[y∗δ ]
[1](t)

law
=

M∑

j=1

(∫ jδ

(j−1)δ
σα(s)ds

)1/α

|zj |

For 1 < α < 2 we have, by (7.30),

δ1−1/α[y∗δ ]
[1](t)

p→ µα,1τ
1/2∗(t)

This implies
δ1/2[y∗δ ]

[1](t)
p→ 0

in contrast to the case where z is Brownian motion where the probability limit is non-negative.
This is a feasible result, for it implies we do not need to know α to use it. More generally,

δ1−r/2[y∗0δ]
[r](t)

p→ 0 if r < (1 + α)/2.

Other observations

Suppose now, for simplicity, that τ is constant and equal to 1. Then |yj | law= δ1/α|z(1)| and

[y∗δ ]
[1](t)

law
= δ1/α

M∑

j=1

|zj |

The random variables |zj | belong to the ‘domain of normal attraction’ of a stable law with
index α. Hence, on account of ?, pp. 580–581), we may conclude:

• If 1 < α < 2 then, for a certain α-stable law Sα,

[y∗δ ]
[1](t)− δ−1+1/αµα,1

law→ Sα.

• If 0 < α < 1 then, for a certain positive α-stable law S+α,

[y∗δ ]
[1](t)

law→ S+α.

• If α = 1 then, for a certain 1-stable law S1,

[y∗δ ]
[1](t)− bδ law→ S1

where ∫ ∞

−∞
sin(δx)dP{|z(1)| ≤ x}.

In all three cases, δ1/2[y∗δ ]
[1](t)

p→ 0.
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Abstract: This book assumes some knowledge of the properties of semimartingales. This
may be unfamiliar to some readers, particularly those with backgrounds in econometrics and
statistics. Thus we have prepared this Appendix which provides some of the basic information
about stochastic analysis. No proofs are given, instead we focus on concepts and definitions.

A.1 Introduction

This book will assume a basic knowledge of semimartingales. This material, which is familiar
in probability theory and finance, is less well known in econometrics and statistics. In order
to bridge this gap we have provided this section as a primer to this material. We state some
definitions and concepts, as well as some results. No proofs are given. For further reading
on this topic we highly recommend the excellent Protter (1990) for a self-contained treatment.
We have deliberately used the notation from that book here in order to allow it to be more
accessible. (The books by Karatzas and Shreve (1991) and Øksendal (1995) are also highly
recommendable and provide additional material). For a very comprehensive treatment, at a
high level of abstraction, see Jacod and Shiryaev (1987).

We first recall some basic concepts.
It is sometimes essential to specify the filter in the background of the stochastic processes

considered. A filtered probability space is a quadruplet (Ω, {Ft},F , P ) where (Ω,F , P ) consti-
tutes an ordinary probability space (i.e. Ω is the sample space, F is the σ-algebra of events,
and P is the probability measure) and the Ft, 0 ≤ t <∞, form an increasing sequence of sub-σ-
algebras of F such that for any stochastic process X under consideration events determined by
Xt = {Xs : 0 ≤ s ≤ t} belong to Ft (the process X is then said to be adapted to the filtration).

A stochastic process X is said to be càdlàg if, with probability 1, its sample paths are
continuous from the right with limits from the left, i.e. except for a subset of Ω of probability
0 we have for all t ≥ 0 that lims↓tXs(ω) = Xt(ω) and that lims↑tXs(ω) exists. Analogously, a
càglàd process is defined as having limits from the right and being continuous from the left.

Predictability (some authors use instead the term previsibility) of a process means essentially
(see Protter (1990, p. 89) for a precise definition) that it is càglàd. Any càglàd process is
predictable, and any deterministic process is predictable (whether càglàd or not).

A stochastic process X on a filtered probability space (Ω, {Ft},F , P ) is a martingale if
E{Xt} <∞ and

E{Xt|Fs} = Xs almost surely, (A.1)

for all s ≤ t. (Note that (A.1) implies that E{Xt} is constant independently of t. In particular,
one speaks of mean-0 and mean-1 martingales.) We write M ∈ Mloc to indicate that a process
M is a local martingale, and M ∈ Mc

loc if it is also continuous1. Processes that belong to
Mloc without, in fact, being martingales are rather exceptional and we shall not indicate the
somewhat technical definition of a local martingale here (see Protter (1990, p. 33)).

Example 22 The following has been proposed as model for the log price process of a typical
stock (Bibby and Sørensen (1997)). The process is defined as the stationary solution to the SDE

dxt = v(xt)σdwt

where w is Brownian motion, σ > 0, and v is specified by

v2(x) = exp{α
√
δ2 + (x− µ)2 − β(x− µ)}

1When we speak of continuous processes we mean processes whose sample paths are continuous (almost surely).
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and 0 ≤ β < α. With this choice of v the one-dimensional marginals of the process follow the
hyperbolic distribution whose density is proportional to

exp{−α
√
δ2 + (x− µ)2 + β(x− µ)}.

The stationary solution to the SDE is a uniformly integrable local martingale which is not a
martingale (for details, see Bibby and Sørensen (1997)). Speaking qualitatively, the reason xt
is not a martingale is that the volatility factor v(xt) is very large when the process is far away
from the origin so that the process has too limited a tendency to return to 0.

A.2 Bounded variation

A real function g on a finite interval [a, b] is said to be of bounded variation if there exists an
M > 0 such that for any partition (t0, t1, ..., tn) of [a, b] with

a = t0 < t1 < · · · < tn = b

we have
n∑

j=1

|g(tj)− g(tj−1)| < M.

Any function g of bounded variation can be written as a difference g = h−k of two nondecreasing
bounded functions h and k. Recall that Stieltjes integration deals with integrals of the type

∫
f(s)dg(s)

for f and g of bounded variation. Standard references for the basic theory of Stieltjes integrals
are Apostol (1957) and Widder (1946).

A.3 Semimartingales and stochastic integrals

Let X = {Xt}t≥0 be a stochastic process. Then Xt is said to be càdlàg if it has sample paths
that, at each point of time t, are continuous from the right with limits from the left. For any such
process we let Xt− = lims↑tXs and then the process Xt− is càglàd, i.e. having sample paths that
are continuous from the left with limits from the right. A càdlàg process is a semimartingale if
it is decomposable as

Xt = X0 +At +Mt, (A.2)

where At, with A0 = 0, is a stochastic process whose paths are of locally bounded variation (i.e. of
bounded variation on any finite subinterval of [0,∞)) andMt, withM0 = 0, is a local martingale.
In general, the decomposition is not unique. However, if there is a decomposition for which At is
predictable then that decomposition is unique and the process is called a special semimartingale.
We denote the classes of martingales, semimartingales and special semimartingales byM, SM,
and SSM, respectively, and we write Mc, SMc, and SSMc for the respective subclasses of
path continuous processes. Similiarly, Mloc stands for the class of local martingales, etc. The
class of locally bounded variation semimartingales is denoted BV.

Remark A.1 If X ∈Mc then X /∈ BV unless X = 0.

BothMt and At can be decomposed into continuous parts, writtenM c
t and A

c
t , and discontin-

uous parts, Md
t and Adt , respectively. For all semimartingales the decomposition intoM c

t and Act
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is unique, while this is not so for Md
t and Adt . When we additionally assume the semimartingale

is special, then the decomposition of the discontinuous part also becomes unique.
In the case where X0 = 0 so that X = A + M with A ∈ BV and M ∈ Mloc we write

Xc = Ac+M c and Xd = X −Xc for the continuous and discontinuous paths of X respectively.

Example 23 Let X = B + C where B is Brownian motion, C is a compound Poisson process
with E {C} = 0 and B ⊥⊥ C. Then two of possible decompositions X = A+M (cf. (A.2)) are
A ≡ 0, M = B + C and A = C, M = B. In this case Xc = B.

Predictable stochastic processes can, in wide generality, be integrated with respect to an
arbitrary semimartingale. In particular if H is predictable and locally square integrable and X
is a semimartingale then the stochastic integral

Y = H •X

is the stochastic process

Yt =

∫ t

0
Hs−dXs,

where the integral can often be defined pathwise (Mikosch and Norvaisa (2000)), and more
generally as the limit in probability of finite sums of the form

n−1∑

i=0

Hsi(Xsi+1 −Xsi),

where 0 = s0 < s1 < ... < sn = t. The latter is the case, in particular, if H is càglàd. In full
generality, a slightly weaker form of convergence holds. Any such integral process Y is itself a
semimartingale (for details, see Protter (1990, Sections II.4 and IV.2)).

Given a semimartingale X, the class of processes H for which the integral Y = H •X can
be naturally defined depends to some extent on the properties of X. In particular, if X equals
Brownian motion B and H is a process such that

∫ t

0
H2
sds <∞

then the integral exists and Y is a continuous local martingale. A detailed account of integration
of deterministic functions with respect to a Lévy process is given in Rocha-Arteaga and Sato
(2001, Section 2.1), see further in Section 11.

In case Yt is of the form

Yt =

∫ t

0
Hs−dMs

with M ∈Mloc and H predictable then Y is itself a local martingale. If, moreover, E{[Y ]
1/2
t } <

∞ for all t > 0 then Y is, in fact, a martingale (here [Y ] denotes the quadratic variation of [Y ],
see section 12 below). On the other hand, if

Yt =

∫ t

0
Hs−dAs

with A being of bounded variation then Y is also a bounded variation process.
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A.4 Quadratic variation

Let Xt be a semimartingale with X0 = 0. The quadratic variation (process) [X] of X is defined
by

[X] = X2 − 2X− •X, (A.3)

or equivalently by

[X]t = p- lim
n−1∑

i=0

(Xsi+1 −Xsi)
2, (A.4)

where again 0 = s0 < s1 < ... < sn = t and the limit is for the mesh size

max
1≤j≤n

|sj − sj−1| → 0

as n→∞. It is this latter construction that we have emphasised in our book.

Example 24 Suppose Xt is of locally bounded variation then

[X]t =
∑

0≤s≤t
(∆Xs)

2 .

So all continuous processes with bounded variation have [X]t = 0.

If X and Y are semimartingales then one defines the quadratic covariation [X,Y ] of X and
Y as

[X,Y ] =
1

2
[X + Y ]− [X]− [Y ]. (A.5)

(Note [X,X] = [X].) The covariation can also be calculated directly by

[X,Y ]t = p- lim
n−1∑

i=0

(Xsi+1 −Xsi)(Ysi+1 − Ysi), (A.6)

provided X0 = Y0 = 0.
The process [X,Y ] is always of local bounded variation (Protter (1990, Corollary 1, Section

II.6)), and
[X,Y ]t = [Xc, Y c]t +

∑

0≤s≤t
∆Xs∆Ys (A.7)

where Xc and Y c denote the continuous local martingale components of X and Y , respectively.
For arbitrary càglàd processes H and K we have the important formula

[H •X,K • Y ]t =

∫ t

0
HsKsd[X,Y ]s. (A.8)

Suppose Yt is an m-dimensional special semimartingale, that is an m-dimensional semi-
martingale each of whose components Y1t, ..., Ymt belongs to SSM, and let Yt = At+Mt be the
(component by component) unique decomposition into a predictable semimartingale At and a
local martingale Mt. The matrix QV, which contains the quadratic variations on the diagonal
and the corresponding covariations off the diagonal, becomes

[Y ]t = [M ]t +
∑

0≤s≤t
∆As∆As

′ +
∑

0≤s≤t
∆Ms∆As

′ +
∑

0≤s≤t
∆As∆Ms

′, (A.9)

the QV of M plus terms which are influenced by the jumps in A and M . If A is continuous then
we obtain the simplification

[Y ]t = [M ]t, (A.10)

which holds irrespective of the presence of jumps in the local martingale component.
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A.5 Ito’s formula

Suppose Xt is a semimartingale and let f be a twice continuously differentiable function. Then
Ito’s formula for semimartingales states that

f(Xt) = f(X0) +

∫ t

0
f ′(Xs−)dXs +

1

2

∫ t

0
f ′′(Xs−)d[X]cs

+
∑

0<s≤t
{f(Xs)− f(Xs−)− f ′(Xs−)∆Xs}, (A.11)

where [X]c denotes the path by path continuous part of the quadratic variation process [X].
(We have that [X]c = [Xc], as follows from the definition by (A.2) above). Note that f(Xt) is
again a semimartingale. In the special case where Xt is continuous then

f(Xt) = f(X0) +

∫ t

0
f ′(Xs)dXs +

1

2

∫ t

0
f ′′(Xs)d[X]s.

Example 25 For a general semimartingale Xt, suppose Yt = exp(Xt), then Ito’s formula im-
plies

Yt = Y0 +

∫ t

0
Ys−dXs +

1

2

∫ t

0
Ys−d[X]cs +

∑

0<s≤t
(∆Ys − Ys−∆Xs) .

When Xt is continuous this simplifies to

Yt = Y0 +

∫ t

0
YsdXs +

1

2

∫ t

0
Ysd[X]s.

This result extends to cover the case where Yt = exp(iζXt). OLE: ADD MATERIAL.

Example 26 For a general semimartingale Xt, suppose Yt = X2
t , then Ito’s formula implies

Yt = Y0 + 2

∫ t

0
Xs−dXs + [X]ct +

∑

0<s≤t
(∆Ys − Ys−∆Xs) .

When Xt is continuous this simplifies to

Yt = Y0 + 2

∫ t

0
XsdXs + [X]t.

When Yt = X4
t , the corresponding results are

Yt = Y0 + 4

∫ t

0
X3
s−dXs + 6

∫ t

0
X2
s−d[X]cs +

∑

0<s≤t
(∆Ys − Ys−∆Xs) ,

and in the continuous case

Yt = Y0 + 4

∫ t

0
X3
sdXs + 6

∫ t

0
X2
sd[X]cs.

These results will be used in, for example, our analysis of realised variances.

There is an important extension of Ito’s formula for the case where f is only assumed to
be a convex function while on the other hand the semimartingale Xt belongs to SMc. It says,
in particular, that convex functions of continuous semimartingales are themselves continuous
semimartingales.
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Theorem A.2 Let Y ∈ SMc and let f be a convex function on R. Then f(Yt) ∈ SMc and

f(Yt) = f(Y0) +

∫ t

0
D−f(Ys)dYs +

∫

R
Λt(a)µ(da)

where
µ([a, b)) = D−f(b)−D−f(a)

and Λt(a) is the local time of Y at level a.

For a detailed discussion of this result see Karatzas and Shreve (1991, p.218-219).

Example 27 Suppose f(x) = |x|r which is convex for r ≥ 1. If r = 1 then the measure µ of
the above Theorem is 2× δ0 (δ0 delta measure at 0) while for r > 1 we have that µ is absolutely
continuous with density 2

(r
2

)
|x|r−2.

Remark A.3 Let M be a continuous local martingale. Then |M |r is a semimartingale if and
only if r ≥ 1. (Cf. Revuz and Yor (1999, p.231)).

A.6 Stochastic differential equations

One is interested in defining stochastic processes Y such that these satisfy stochastic differential
equations (SDE s) of the form

dYt = F (t;Yt−)dXt, (A.12)

with an initial condition specifying the value of Y at t = 0 and whereX is a given semimartingale.
This question is not well posed until it is specified what is meant by a solution to the SDE. One
says that Y solves (A.12) with initial condition Y0 if

Yt = Y0 +

∫ t

0
F (s, Ys−)dXs. (A.13)

Under relatively mild conditions on the function F the solution exists uniquely and is itself a
semimartingale, see Protter (1990, Section V.3).

We can write Ito’s formula in terms of an SDE. The expression is

df(Xt) = f ′(Xt−)dXt +
1

2
f ′′(Xt−)d[X

c]t +
{
f(Xt)− f(Xt−)− f ′(Xt−)∆Xt

}
. (A.14)

When the process is continuous this simplifies to

df(Xt) = f ′(Xt)dXt +
1

2
f ′′(Xt)d[X]t. (A.15)

Example 28 Suppose Yt = exp(Xt), then

dYt = YtdXt +
1

2
Ytd[X]t.

Example 29 If Xt follows a general diffusion

dXt = µ(Xt)dt+ σ(Xt)dwt,

then
d[X]s = σ2(Xs)dt,

which implies

df(Xt) =

{
f ′(Xt)µ(Xt) +

1

2
f ′′(Xt)σ

2(Xt)

}
dt+ σ(Xt)dwt,

from (A.14).
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A.7 Stochastic exponentials

For a continuous semimartingale X the stochastic (or Doléans-Dade) exponential is given by

E(X) = eX−
1
2
[X] (A.16)

and we have that

X ∈Mc
loc ⇐⇒ E(X) ∈Mc

loc. (A.17)

Moreover,
eX = E(X̂) (A.18)

where

X̂ = X +
1

2
[X], (A.19)

(as follows as the quadratic variation of quadratic variation is zero).
It follows that

eX ∈Mc
loc ⇐⇒ E(X̂) ∈Mc

loc ⇐⇒ H +
1

2
[H] ∈Mc

loc. (A.20)

More generally, suppose that X is a semimartingale. Then the stochastic exponential E(X)
of X is defined as

E(X)t = eXt− 12 [X]t
∏

0<s≤t
(1 + ∆Xs)e

−∆Xs+
1
2
(∆Xs)2 (A.21)

and Y = E(X) is the unique solution to the SDE

dYt = Yt−dXt

with initial condition Y0 = 1. The process E(X) is a semimartingale.
Formula (A.21) may equivalently be expressed as

E(X)t = eX
c
t− 12 [Xc]t · eXd

t

∏

0<s≤t
(1 + ∆Xs)e

−∆Xs (A.22)

where Xc denotes the (unique) continuous local martingale part of X and Xd = X − Xc.
Although it may seem puzzling at first sight, the formulae (A.21) and (A.22) are indeed even if
1 + ∆xs is 0 or negative for some values of s.

For these results, see Protter (1990, Section II.8).

A.8 The likelihood ratio process

To introduce ideas, suppose we have a discrete time stochastic process y with natural filtration
Ft−, which (in discrete time) holds all the observations up to time t − 1. We compare two
different probability measures P and Q which live on the filtered space (Ω, {Ft} ,F). We write
f and g for densities under P and Q, respectively, (assuming these densities exist). Then we
can compare their fit via the likelihood ratio

Lt =
g(y1, ..., yt)

f(y1, ..., yt)
.

Of course, using the prediction decomposition,

Lt =
g(yt|Ft−)
f(yt|Ft−)

Lt−1 =
g(yt, yt−1|Ft−1−)
f(yt, yt−1|Ft−1−)

Lt−2.
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If we calculate this for each (discrete) value of t, taking L0 = 1, then Lt is called the likelihood
ratio process and under P , Lt is a mean-1 martingale with respect to Ft−. Thus

EP (Lt|Fs+1−) = Ls.

The same arguments can be used in continuous time, although now we have to explicitly use
measures instead of densities. Let Pt and Qt denote the restrictions of P and Q to the σ-algebra
Ft and assume P and Q are locally equivalent, i.e.

P (A) = 0 ⇔ Q(A) = 0

whenever A ∈ Ft for some t. Then we use the following notation

Lt =
dQt
dPt

The quantity dQt
dPt

is called the Radon-Nikodym derivative of Qt with respect to Pt, and Lt is the
likelihood ratio function based on observation of the process up to and including time t. The
Radon-Nikodym derivative decomposes, for 0 < s < t, as2

dQt
dPt

=
dQs
dPs

dQFst
dPFst

into the product of the restriction to Fs times the conditional law given the restriction Fs. This
implies the likelihood ratio process satisfies

Lt = Ls
dQFst
dPFst

.

Consequently, by the calculus of conditional expectations

EP {Lt|Fs} = LsEP

{
dQFst
dPFst

|Fs
}

= Ls

(almost surely) showing that the likelihood process Lt is a mean-1 martingale under the prob-
ability measure P . See, for example, Barndorff-Nielsen and Sørensen (1995) for a more formal
view of this material.

A.9 Girsanov-Meyer Theorem

Let P and Q be locally equivalent probability measures on the filtered measure space (Ω, {Ft},F)
and, as in the previous section, let Lt =

dQt
dPt

.

2We are using here the general fact that if P and Q are two equivalent probability measures on a measure
space (Ω,F) then for any sub-σ-algebra B of F the Radon-Nikodym derivative of Q with respect to P factorises
as

dQ

dP
=

dQB
dPB

dQB

dPB

into the Radon-Nikodym derivative of the marginal laws corresponding to B times the Radon-Nikodym derivative
of the conditional laws given B.
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Theorem A.4 (Girsanov-Meyer) Suppose that X is a semimartingale under P , with decom-
position X = A+M where A is a càdlàg process of locally bounded variation and M is a local
martingale. Then X is also a semimartingale under Q. Furthermore

N =M − L−1 • [M,L] (A.23)

is a Q-local martingale and X −N is of locally bounded variation under Q.

Proof. See Protter (1990, Section III.6).

Example 30 Let X be the solution of the SDE

dXt =
{
µ+ βσ2(t)

}
dt+ σ(t)dBt

i.e.

Xt = µt+ βσ2∗(t) +
∫ t

0
σ(s)dBs

where B is Brownian motion and

σ2∗(t) =
∫ t

0
σ2(s)dt

and we assume that σ(t) is a positive bounded càglàd process independent of B, all under a
filtered probability space (Ω, {Ft},F , P ). We seek an equivalent martingale measure (EMM),
that is a probability measure locally equivalent to P and such that X is a local martingale under
the new measure. Let

Ht = µ+ βσ2(t)

and note that

Yt = −
∫ t

0

Hs

σ(s)
dBs

is a local P -martingale with
d[Y ]t = σ−2(t)H2

t dt

By the section on exponential martingales we therefore have that

Lt = E(Y )t = exp

{
−
∫ t

0

Hs

σ(s)
dBs −

1

2

∫ t

0

H2
s

σ2(s)
ds

}

is a local martingale under P . If L is, in fact, a martingale then it has mean 1. Consequently,
in that case, we may for each t > 0 define a probability measure Qt by

dQt
dPt

= Lt.

We are now in position to show that for any T > 0 the process {Xt : 0 ≤ t ≤ T} is a QT
martingale. Letting

At = µt+ βσ2∗(t) and Mt =

∫ t

0
σ(s)dBs

we have that X = A +M is a decomposition of X under P as required in the Girsanov-Meyer
Theorem, and with

Nt =Mt −
∫ t

0
L−1s d[L,M ]s
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the theorem gives that for any T > 0 the process {Nt : 0 ≤ t ≤ T} is a QT -local martingale.
What remains to verify is thus that X = N . By construction, L is the solution of the SDE

dLt = LtdYt

= Lt
Ht

σ(t)
dBt

cf. the section on exponential martingales and the fact that L is continuous. Therefore, by Ito
calculus,

d[L,M ]t = −Lt
Ht

σ(t)
dBt · σ(t)dBt

= −LtHtdt.

It follows that

Nt = Mt −
∫ t

0
L−1s d[L,M ]s

= Mt +

∫ t

0
Hsds

= Mt +At

= Xt

as was to be shown.

A.10 Multivariate versions

There are multivariate versions of all the concepts discussed above. In particular we will discuss
the multivariate version of Ito’s formula. Let X = (X1, ..., Xm) be anm-tuple of semimartingales
and let f be a function from Rm into R such that f has continuous second order derivatives.
Here we use the notation that f/i is the partial derivative of f with respect to its i-th coordinate,
f/ij is the second order partial derivative, etc.

Then f(X) is a semimartingale and

f(Xt) = f(X0) +
m∑

i=1

∫ t

0
f/i(Xs−)dXis

+
1

2

∑

1≤i,j≤m

∫ t

0
f/ij(Xs−)d[Xi, Xj ]

c
s

+
∑

0<s≤t

{
f(Xs)− f(Xs−)−

m∑

i=1

f/i(Xs−)∆Xis

}
. (A.24)

Example 31 For any continuous semimartingales Y 1
t , ..., Y

m
t (with starting value 0) we have

Y 1
t · · ·Y m

t =
m∑

i=1

∫ t

0

∏

j 6=i
Y j
s dY

i
s +

∑

1≤i<j≤m

∫ t

0

∏

k 6=i,j
Y k
s d[Y

i, Y j ]s (A.25)

For m = 2 this reduces to

Y 1
t Y

2
t =

∫ t

0
Y 1
s dY

2
s +

∫ t

0
Y 2
s dY

1
s +

∫ t

0
d[Y 1, Y 2]s (A.26)
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while for m = 4

Y 1
t Y

2
t Y

3
t Y

4
t =

∫ t

0
Y 1
s Y

2
t Y

3
t dY

4 +

∫ t

0
Y 1
s Y

2
t Y

4
t dY

3 +

∫ t

0
Y 1
s Y

3
t Y

4
t dY

2 +

∫ t

0
Y 2
t Y

3
t Y

4dY 1
s

+

∫ t

0
Y 1
s Y

2
t d[Y

3, Y 4]s +

∫ t

0
Y 1
s Y

3
t d[Y

2, Y 4]s +

∫ t

0
Y 1
s Y

4
t d[Y

2, Y 3]s

+

∫ t

0
Y 2
s Y

3
t d[Y

1, Y 4]s +

∫ t

0
Y 2
s Y

3
t d[Y

1, Y 3]s +

∫ t

0
Y 3
s Y

4
t d[Y

1, Y 2]s. (A.27)

A.11 Ito algebra

With At a process of locally bounded variation and Bt the Brownian motion we have

dBt · dBt = dt (A.28)

and
dBt · dt = 0 and dAt · dt = 0. (A.29)

If N is a Poison process then
(dNt)

2 = dNt (A.30)

while for s 6= t
dNsdNt = 0. (A.31)

The formulae (A.28) and (A.30) are, in fact, special cases of

dXt · dYt = d[X,Y ]t

which holds for arbitrary semimartingales X and Y .
These simple Ito algebra results are helpful in carrying out calculations.

A.12 Results for Lévy processes

A.12.1 Types of Lévy processes

Recall that the law of a Lévy process z is determined by the Lévy-Khintchine formula for the
cumulant function of z(t), which is of the form

C{z(t) ‡ y} = −1

2
tbζ2 + itaζ + t

∫

R
{eiζx − 1− i1[−1,1](x)ζx}U(dx) (A.32)

where U is a Lévy measure. It is useful to introduce the following classification of Lévy processes.

Definition 3 A Lévy process having characteristic triplet (a, b, U) is said to be of
(i) class A if

∫
R U(dx) <∞;

(ii) class B if
∫
R U(dx) =∞ and

∫
R min{1, |x|}U(dx) <∞;

(iii) class C if
∫
R min{1, |x|}U(dx) =∞.

If, moreover, b = 0 we write A0, B0, C0.

A Lévy process without Gaussian component (i.e. b = 0) is of locally bounded variation
if and only if it is of type A0 or type B0 (see Sato (1999, Theorem 21.9)). Such a process is
sometimes said to be of finite variation, while processes of class B0 and C0 are said to exhibit
infinite activity . Note that the class A0 is precisely the class of compound Poisson processes.
If a Lévy process has a Gaussian component then it is of unbounded variation on any finite
interval and hence not of locally bounded variation.
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A.12.2 Stochastic integration

All Lévy processes are semimartingales. So, in particular, we can consider stochastic integrals
of the form

f(·, A) • Z,
where Z is a Lévy process, f is a real function on R+×R and A is a càglàd stochastic process,
and f satisfies some mild regularity condition ensuring that the process f(·, A) is again càglàd.

Integration (over bounded intervals) of deterministic functions with respect to a Lévy process
is discussed in detail by Rocha-Arteaga and Sato (2001, Section 2.1).

A.12.3 Lévy-Ito formula for Lévy processes

For subordinators Z (without a drift term) the Lévy-Ito representation has the simple form

Zt =

∫ ∞

0
xNt(dx). (A.33)

For general Lévy processes, the expression is considerably more complicated. Then Z has the
Lévy-Ito representation

Zt = tE

{
Z1 −

∫

{|x|≥1}
xNt(dx)

}
+ bBt (A.34)

+

∫

{|x|<1}
x{Nt(dx)− tν(dx)}

+

∫

{|x|≥1}
xNt(dx),

where B is Brownian motion while, for any set Λ, 0 /∈ Λ̄ (the closure of Λ), Nt(Λ) =
∫
ΛNt(dx)

is a Poisson process with mean tν(Λ), ν being a Lévy measure on R. Furthermore, the Poisson
process N(Λ) is independent of B and N(Λ) is independent of N(Γ) if Λ and Γ are disjoint.
The representation may be given the alternative form

Zt = at+ bBt

+

∫

{|x|<ε}
x{Nt(dx)− tν(dx)}

+
∑

0<s≤t
1{|∆Zs|≥ε}∆Zs, (A.35)

where ε is an arbitrarily chosen positive number. For details, see Protter (1990, Section I.4).

A.12.4 Quadratic variation of Lévy processes

The quadratic variation [Z] of an arbitrary Lévy process Z is again a Lévy process, in fact
a subordinator. This is an immediate consequence of the definition of quadratic variation.
Furthermore, by the Lévy-Ito representation (A.34) we have, writing N(dt, dx) for dNt(dx),
that

dZt = adt+ bdB(t)

+

∫

{|x|<1}
x{N(dt, dx)− dtν(dx)}

+

∫

{|x|<1}
xN(dt, dx),
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from which, using the Ito algebra formulae, we obtain

(dZt)
2 = b2dt+

∫

R\{0}
x2N(dt, dx).

Hence the Lévy-Ito representation of [Z] is

[Z]t = b2t+

∫

R\{0}
x2N(t, dx).

A.12.5 Density transformations

Sato (2000).

Theorem A.5 Let X be a Lévy process with characteristic triplet (a, b, U) under some proba-
bility measure P , and let Q be a probability measure on the same filtered space as P . Then (i)
and (ii) below are equivalent.

(i) Q
loc∼ P and X is a Lévy process under Q, with characteristic triplet (ã, b̃, Ũ).

(ii) The following conditions hold:

• Ũ(dx) = k(x)U(dx) for some Borel function k.

•
∫
{1− k(x)}2U(dx) <∞

• ã = a+
∫ x

1+x2
{k(x)− 1}U(dx) + c

√
b for some c ∈ R

• b̃ = b.
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Appendix B

Collections of definitions and
notation
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B.1 Motivation

This book covers a great deal of material drawn from a number of fields. As a result it is easy
to lose track of the notation or not recall a term. Hence we have provided an extensive list of
definitions and notation. We have split this into two sections: notation and some distributions.

B.2 Notation

• [y](t). The quadratic variation (QV) of the semimartingale process y(t). Split time into
small intervals

tr0 = 0 < tr1 < ... < trMr
= t,

then

[z](t) =p− lim
r→∞

Mr∑

j=1

{y(trj)− y(trj−1)}2, where sup
j
{trj − trj−1} → 0 for r →∞.

• [y]i. Increment to quadratic variation

[y]i = [y](ih̄)− [y]{(i− 1)h̄}.

• [yM ]i. Realised variance of y over an interval h̄ > 0 using M high frequency observations.
It is defined as

[yM ]i =
M∑

j=1

{
y

(
(i− 1)h̄+

j

M
h̄

)
− y

(
(i− 1)h̄+

(j − 1)

M
h̄

)}2

.

• c(s). The autocovariance function

c(s) = Cov(x(t), x(t+ s)).

• C{ζ ‡x}. The cumulant function of the random variable x using complex arguments. It is
defined as

C{ζ ‡ x} = log E
(
eiζx

)
.

Thus it is the log of the characteristic function.

• CIR. In economics Feller’s square root process is often called the CIR process after Cox,
Ingersoll, and Ross (1985) who were the first economists to use this process in economics.
It is defined as the solution to the SDE

dτ(t) = −λ {τ(t)− ξ} dt+ ω
√
τ(t)db(λt), where ξ, λ, ω > 0,

where b is Brownian motion.

• Dυ(ω). Functions of Bessel functions

Dν(ω) = Rν (ω)R−ν (ω) =
Kν+1(ω)Kν−1(ω)

K2
ν (ω)

,

noting that Dν(ω) = D−ν(ω) and that Dυ(ω) is strictly decreasing. Further,

D′ν (ω) = Dν(ω)

{
Rν (ω)−Rν (ω)−1 +R−ν (ω)−R−ν (ω)−1 −

2

ω

}
.
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We note that

lim
ω↓0

Dν (ω) =

{
∞ |ν| ≤ 1
|ν|
|ν|−1 |ν| > 1

and lim
ω→∞Dν (ω) = 1.

Hence if |ν| ≤ 1 there is a unique ω which solves r = Dν (ω) for any r ≥ 1..

• D-OU process. A parametric OU process specified through the one-dimensional marginal
distribution D of the stationary solution, τ(t).

• D-OUm. Sum of m independent OU processes whose sum follows a stationary process
having one-dimensional marginal law D.

• GH(ν, α, β, µ, δ). Generalised hyperbolic distribution. See Table B.3.

• GIG(ν, δ, γ). Generalised inverse Gaussian distribution. See Table B.1 and Table B.2.

• Γ(ν). Gamma function

Γ(ν) =

∫ ∞

0
xν−1 exp(−x)dx, ν > 0.

• Γ(ν, α). Gamma distribution. See Table B.1 and Table B.2.

• HA(α, β, µ, δ). Hyperbola distribution. See Table B.3.

• H(α, β, µ, δ). Hyperbolic distribution. See Table B.3.

• h̄. Time space. Could represent, for example, a day or a month. Pronounced hbar.

• i. Represents the index of a period of time, e.g. i-th day or month.

• IG(δ, γ). Inverse Gaussian distribution.

• Jν(x). Bessel function of the first kind. Defined as

Jν(x) =
xν

2ν

∞∑

k=0

(−1)k x2k

22kk!Γ(ν + k + 1)
. (B.1)

For ν of the form ν = n + 1
2 , where n is an integer, explicit expressions for Jν exist.

Specifically we have

Jn+ 1
2
(z) = (−1)nN−n− 1

2
(z) = (−1)nzn+ 12√(2/π)

dn

(zdz)n
sin z

z
(B.2)

J−n− 1
2
(z) = (−1)n−1Nn+ 1

2
(z) = zn+

1
2
√
(2/π)

dn

(zdz)n
cos z

z
(B.3)

In particular,
J 1
2
(z) =

√
(2/π)z−1/2 sin z (B.4)

J− 1
2
(z) =

√
(2/π)z−1/2 cos z (B.5)

J 3
2
(z) =

√
(2/π)z−1/2(

sin z

z
− cos z) (B.6)

J− 3
2
(z) = −√(2/π)z−1/2(sin z +

cos z

z
) (B.7)
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• K(θ ‡ x). The kumulant function of the random variable x. It is defined as

K(θ ‡ x) = log E
(
eθx
)
.

This is the log of the moment generating function.

• K(θ ‡ x). The kumulant function of the random variable x using a negative argument θ is
written as

K {θ ‡ x} = log E
(
e−θx

)
.

• κr. The r-th cumulant is given by

κr =
∂rK(θ ‡ x)

∂θr

∣∣∣∣
θ=0

.

These are related to the centred moments in the following way:

κ1 = µ1, κ2 = µ2, κ3 = µ3

and
κ4 = µ4 − 3µ22, κ5 = µ5 − 10µ2µ3.

• κ́r. Special notation for the cumulants of an OU process. We then reserve κr for the r− th
cumulant of z(1), the BDLP at time 1. It is then possible to show that

κr = rκ́r, for r = 1, 2, ....

• k(θ). Cumulant function of z(1), the BDLP at time one. In particular

k(θ) = log E [exp {−θz(1)}] .

An important result is that
k(θ) = θḱ′(θ),

where ḱ′(θ) = dḱ(θ)/dθ.

• ḱ(θ). Kumulant function of an OU process τ

ḱ(θ) = log E [exp {−θτ(t)}] .

An important feature is that

ḱ(θ) =

∫ ∞

0
k(θe−s)ds.

• Kν(x). Modified Bessel functions of the third kind are written as Kν(x), where

Kν(x) =
1

2

∫ ∞

0
zν−1 exp

{
−1

2
x
(
z + z−1

)}
dz, x > 0.

Mathematically tractable special cases include

K1/2(x) =

√
π

2x
e−x = K−1/2(x),

while

Kn+ 1
2
(x) = K 1

2
(x)

(
1 +

n∑

i=1

(n+ i)!

i!(n− i)!2
−ix−i

)
.
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It is helpful to note that

K ′ν(x) = −
1

2
{Kν−1(x) +Kν+1(x)} and Kν(x) = K−ν(x),

while
Kν+1(x) = 2νx−1Kν(x) +Kν−1(x).

The functions K0(x) and K1(x) appear in most mathematical and statistical libraries,
while general code for computing Kν(x) is available at the FN library of NETLIB. It is
ported to most scientific software such as Splus, MatLab, R and Ox. Generally Kν(x) has
the important property that for x ↓ 0 we have

Kν(x) ∼





− log x if ν = 0

Γ(|ν|)2|ν|−1x−|ν| if ν 6= 0.

For the definitions and properties Bessel functions see, for example, Gradstheyn and
Ryzhik (1965, pp. 958-71). Finally as x→∞ so

Kν(x) ∼
√
(π/2)x−1/2e−x

(
1 +

4ν2 − 1

8
x−1 +O(x−2)

)
,

thus, in particular
Kν(x) ∼

√
(π/2)x−1/2e−x (B.8)

for x→∞.

• Kν . Normalised Bessel functions of the third kind Kν(x) = xνKν(x). As a result for ν 6= 0
we have that for x ↓ 0

Kν(x) ∼ Γ(|ν|)2|ν|−1.

• La(α, β, µ). Laplace distribution. See Table B.3.

• LN(µ, σ2). Log-normal distribution. Parametric distribution on the positive half-line such
that log x ∼ N(µ, σ2). Then density is

1√
2πσ2

1

x
exp

{
− 1

2σ2
(log x− µ)2

}
, x > 0.

The implication is that

E (xr) = exp

(
rµ+

1

2
r2σ2

)
.

Finally the log-normal does not possess a moment generating function.

• M(θ ‡ x). Moment generating function for x. It is defined as

M(θ ‡ x) = E
(
eθx
)
.

An important feature of the moment generating function is that it can produce the un-
centred moments via

µ′r = E(xr) =
∂rM(θ ‡ x)

∂θr

∣∣∣∣
θ=0

.

• µr. The r-th centred moment. Assuming they exist, let µ1 = E(x) and then

µr = E(x− µ1)r , r = 2, 3, ... .
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• µ′r. The r-th uncentred moment. Assuming they exist

µ′r = Exr, r = 2, 3, ... .

• Meixner(a, b, d, µ). Meixner density is

f(x) =
{2 cos (b/2)}2d

2aπΓ(2d)
exp

{
β (x− µ)

a

} ∣∣∣∣Γ
(
d+

i (x− µ)
a

)∣∣∣∣
2

, i =
√
−1,

which has the cumulant function

C{ζ ‡ x} = iµζ + 2d log





cos (β/2)

cosh
(
aζ−iβ

2

)



 .

• Nν . Bessel function of the second kind. Defined as

Nν(x) =
1

sin νπ
{cos νπJν(x)− J−ν(x)}. (B.9)

• N(µ, σ2). Normal distribution. See Table B.3.

• NΓ(ν, δ, β, µ). Normal gamma distribution. See Table B.3.

• NIG(α, β, µ, δ). Normal inverse Gaussian distribution. See Table B.3.

• NRIG(α, β, µ, δ). Normal reciprocal inverse Gaussian distribution. See Table B.3.

• OU process. Ornstein-Uhlenbeck process follows the solution to

dτ(t) = −λτ(t)dt+ dz(λt), λ > 0,

where z is a Lévy process. Often we are interested in the special case of non-negative
processes, in which case z must be a subordinator.

• OU-D process. A parametric OU process specified through the law of the BDLP at time
one, z(1).

• OUm. Sum of independent m independent OU processes.

• PHA(δ, γ). Positive hyperbola distribution. See Table B.1 and Table B.2.

• PH(δ, γ). Positive hyperbolic distribution. See Table B.1 and Table B.2.

• Po(ψ). Poisson distribution. Parametric distribution for the non-negative integers. The
density function is, for the parameter ψ,

e−ψψx

x!
, x = 0, 1, 2, ... .

We usually write the distribution as X ∼ Po(ψ). Finally

K(θ ‡ x) = ψ
(
1− e−θ

)
.
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• PolyLog(n, z). The polylog function.

PolyLog(n, z) =
∞∑

k=1

zk/kn.

• φ (ζ ‡ x). The characteristic function of the random variable x. It is

φ (ζ ‡ x) = E
(
eiζx

)
.

• Φ (.). Standard normal distribution function.

• r(s). Autocorrelation function. That is

r(s) = Cor(x(t), x(t+ s)).

Sometimes we use r(s ‡ x) to indicate ownership, e.g. the autocorrelation of x is r(s ‡ x),
the autocorrelation of y is r(s ‡ y).

• Rν (ω). Ratios of Bessel functions

Rν (ω) =
Kν+1(ω)

Kν(ω)
.

Important properties of these ratios are that

R−ν (ω) = Rν−1 (ω)
−1

The first derivative of this ratio is

R′ν (ω) = R2
ν (ω)−

2ν + 1

ω
Rν (ω)− 1.

• RΓ(ν, α). Reciprocal gamma distribution. See Table B.1 and Table B.2.

• RIG(δ, γ). Reciprocal inverse Gaussian distribution. See Table B.1 and Table B.2.

• r∗(s). Integrated autocorrelation function. That is

r∗(s) =
∫ s

0
r(u)du.

• r∗∗(s). Doubly integrated autocorrelation function. That is

r∗∗(s) =
∫ s

0
r∗(u)du.

• σ(t). A non-negative stochastic process, usually employed to model the instantaneous or
spot volatility in an stochastic volatility model.

• τ(t) = σ2(t). A non-negative process, usually employed to model the spot variance.

• τ i. Integrated variance over the period h̄ (i− 1) to h̄i, that is

τ i =

∫ h̄i

h̄(i−1)
τ(t)dt = τ ∗(h̄i)− τ ∗(h̄ (i− 1)).

207



• Semimartingale. A process y(t) which can be decomposed as

y(t) = a(t) +m(t),

where m(t) is a local martingale and a(t) is of locally bounded variation is called a semi-
martingale. The decomposition is not, in general unique.

• Special semimartingale. A semimartingale whose local bounded variation process is ad-
ditionally predictable is called a special semimartingale. In such cases the decomposition
into a local martingale and a locally bounded variation process is unique and is called
canonical.

• Subordinator. Any Lévy process with non-negative increments.

• Superposition. Sum of independent processes.

• supOU. Superposition of OU processes.

• τ∗(t). Chronometer or integrated variance. Let τ(t) denote the instantaneous variance of
a SV process. Then

τ∗(t) =
∫ t

0
τ(t)dt,

is called the integrated variance of the process.

• t. Represents the continuous time clock.

• T(ν, δ, β, µ). Skewed Student’s t distribution. In the case of β = 0 see the symmetric
Student’s t distribution. See Table B.3.

• yi. Return over integral of length h̄. That is

yi = y∗(ih̄)− y∗ {(i− 1) h̄} .

• u(x). Density of the Lévy measure of the BDLP of an OU process.

• u(x). Shorthand for xu(x).

• w(x). Density of the Lévy measure W (x). For an OU process with measure u(x), the
density of the BDLP measure is

w(x) = −u(x)− xu′(x)
= −u′(x).

Lévy densities are non-negative (like probability densities), but do not necessarily integrate
to one or indeed do not necessarily even integrate.

• W (x). Lévy measure. Lévy measures appear in the Lévy-Khintchine representation and
play an important role in manipulating Lévy processes.

• W+(x). Upper tail integral. It is defined as

W+(x) =

∫ ∞

x
w(y)dy

= u(x).

• W−1(x). Inverse of the upper tail integral. That is

W−1(x) = inf
{
y > 0 :W+(y) ≤ x

}
.

• y∗(t). Log-price of an asset at time t.

• z(t). A Lévy process.
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B.3 Distributions

B.3.1 Generalised inverse Gaussian (GIG) distributions

Table B.1 and Table B.2 gives the density function of the GIG distribution as well as the
corresponding result for many of its most well known special cases. The GIG distribution is
important for it provides a rather general parametric form for many positive random variables.
The following results are important and hold generally for GIG variables so long as min(δ, γ) > 0.

1. It is easy to see that generically if X ∼ GIG(ν, δ, γ) then

X−1 ∼ GIG(−ν, γ, δ) and aX ∼ GIG
(
ν, a1/2γ, a−1/2δ

)
.

2. The density is unimodal with the mode at

√(
ν − 1

γ2

)2

+
δ2

γ2
− ν − 1

γ2
.

The density is also log-concave if ν ≥ 1.

3. If δγ > 0 then

E(X) =

(
δ

γ

)
Rν (δγ) and E(X−1) =

γ

δ
R−ν (δγ) .

4. A simple generic method has been derived by Dagpunar (1988, pp. 133-5) to sample from
the GIG distribution (see also Atkinson (1982)).

In addition the following special results are useful. We can simulate from a gamma distribu-
tion using rejection (e.g. Ripley (1987, pp. 88-90)) or, more slowly, via inverting the distribution
function. The former is coded in most statistical packages. Sums of n independent Γ(ν, α) vari-

ables are distributed as a Γ(nν, α) variable. Finally, we recall Γ
(
ν
2 ,

1
2

)
is the same as a χ2ν

distribution, while Γ(1, α) = Exp(α). We recall the RΓ
(
ν
2 ,

1
2

)
is the same as a χ−2ν distribution.

The inverse Gaussian distribution function is

Pr(X ≤ x) = Φ

{
δx−1/2

(
xγ

δ
− 1

)}
+ exp(2δγ)Φ

{
−δx−1/2

(
xγ

δ
+ 1

)}
.

This result is due to Schrödinger (1915). The first three cumulants are

κ1 =
δ

γ
, κ2 =

δ

γ3
, κ3 = 3

δ

γ5
.

We can simulate from the IG distribution without rejection using a method discussed by Devroye
(1986, p. 149) (notice Ripley (1987, p. 94) has a small typo which is corrected on his homepage).
Sums of n independent IG(δ, γ) variables are distributed as a IG(nδ, γ) variable. Finally, we
should note that some textbooks use a different parameterisation than above, writing the density
as

λ1/2√
2π
x−3/2 exp

{
− λ

2µ2x
(x− µ)2

}
, x > 0.

The parameters in the model are related via λ = δ2 and µ2 = γ−2λ.
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Distribution Density function Lévy density w(x)

GIG(ν, δ ≥ 0, γ ≥ 0) (γ/δ)ν

2Kν(δγ)
xν−1 exp

{
−1

2(δ
2x−1 + γ2x)

} {
1
2

∫∞
0 e−

1
2
δ−2xξgν(ξ)dξ +max (0, ν)λ

}

× exp
(
−γ2x/2

)
x−1

Γ(ν > 0, α = γ2/2) αν

Γ(ν)x
ν−1 exp (−αx) νx−1 exp(−αx)

= GIG(ν > 0, 0, γ)

IG(δ > 0, γ ≥ 0) δeδγ√
2π
x−3/2 exp

{
−1

2

(
δ2x−1 + γ2x

)}
δ√
2π
x−3/2 exp

(
−1

2γ
2x
)

= GIG
(
−1

2 , δ, γ
)

PH(δ > 0, γ ≥ 0) (γ/δ)
2K1(δγ)

exp
{
−1

2(δ
2x−1 + γ2x)

}

= GIG(1, δ, γ)

RΓ(ν > 0, α = δ2/2) αν

Γ(ν)xν+1
exp

(
−αx−1

)

= GIG(−ν, δ, 0)
RIG(δ > 0, γ ≥ 0) γeδγ√

2π
x−1/2 exp

{
−1

2

(
δ2x−1 + γ2x

)}

= GIG
(
1
2 , δ, γ

)

RPH(δ, γ) (γ/δ)−1

2K1(δγ)
x−2 exp

{
−1

2(δ
2x−1 + γ2x)

}

= GIG(−1, δ, γ)

Table B.1: Summary of the GIG distribution and its special cases. Recorded are the densities
and Lévy densities. Here Kν is a modified Bessel function of the third kind. Also gν(x) =
2
xπ2

{
J2
|ν|(
√
x) +N2

|ν|(
√
x)
}−1

.
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Distribution Cumulant function K̄ (θ) Moments

GIG(ν, δ ≥ 0, γ ≥ 0) logKν

{
δγ
(
1 + 2θ/γ2

)1/2}− logKν(δγ)

+ν log γ − ν
2 log

(
γ2 + 2θ

)

Γ(ν > 0, α = γ2/2) −ν log
(
1 + θ

α

)
κr =

(r−1)!ν
αr

= GIG(ν > 0, 0, γ)

IG(δ > 0, γ ≥ 0) δγ − δ
(
γ2 + 2θ

)1/2
κr = 1 · 3 · · · (2r − 3)

= GIG
(
−1

2 , δ, γ
)

×δγ−2r+1

PH(δ > 0, γ ≥ 0) log{1 + 2θ/γ2}1/2 − logK1(δγ)

= GIG(1, δ, γ) + logK1

{
δγ
(
1 + 2θ/γ2

)1/2}

RΓ(ν > 0, α = δ2/2) µr =
1
αr

Γ(ν−r)
Γ(ν)

= GIG(−ν, δ, 0)
RIG(δ > 0, γ ≥ 0) log γ2 − 1

2 log
(
γ2 + 2θ

)

= GIG
(
1
2 , δ, γ

)
+δγ − δ

(
γ2 + 2θ

)1/2

RPH(δ, γ) logK1

{
δγ
(
1 + 2θ/γ2

)1/2}− logK1(δγ)

= GIG(−1, δ, γ) − log γ + 1
2 log{γ2 + 2θ}

Table B.2: Summary of the cumulant structure of the GIG distribution and its special cases.
Recorded are the cumulant function and either the moments or cumulants (which ever has a
simpler form). Here Kν is a modified Bessel function of the third kind.
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B.3.2 Generalised hyperbolic (GH) distributions

The GH distribution covers many of the special cases of distributions with support on the real
line used in this book. It is constructed by

x = µ+ βσ2 + σε,

where σ2 ∼ GIG(ν, δ, γ) and is independent of ε ∼ N(0, 1). Throughout we write α =
√
β2 + γ2.

The normal variance-mean mixture representation allows easy simulation, while its cumulant
function also follows immediately as

K(θ ‡ x) = µθ +K

{(
β +

1

2
σ2
)
‡ θ
}
,

that is the cumulant function is

K(θ ‡ x) = ν

2
log

{
γ

α2 − (β + θ)2

}
+ log





Kν

{
δ
√
α2 − (β + θ)2

}

Kν

{
δ
√
α2 − β2

}





+ θµ, |β + θ| < α.

The first two moments are

E(X) = µ+ β
δ

γ

Kν+1(δγ)

Kν(δγ)
and

Var(X) = δ2
〈
Kν+1(δγ)

δγKν(δγ)
+
β2

γ2

[
Kν+2(δγ)

Kν(δγ)
−
{
Kν+1(δγ)

Kν(δγ)

}2
]〉

.

Kν is the modified Bessel function of the third kind. Special cases of the class of distributions
are given in Table B.3.

Some results for the special cases given in Table B.3 turn out to be helpful.

• Hyperbolic distribution. Parametric distribution on the real line (special case of gen-
eralised hyperbolic with ν = 1). Cumulant generating function

K(ξ ‡ x) = log ξ − logK1(ξ) + logK1

(√
ξ2 + δ2u2

)
− 1

2
log

(
ξ2 + δ2u2

)
.

• Normal gamma distribution has the cumulant function

µθ + ν log

(
1 +

θβ + θ2/2

γ

)
.

• Normal inverse Gaussian distribution. NIG’s cumulant generating function

K(ξ ‡ x) = δ

{√
α2 − β2 −

√
α2 − (β + ξ)2

}
+ µξ.

The first four cumulants are, writing ρ = β/α,

κ1 = µ+
δρ√
1− ρ2

, κ2 =
δ2

(δα) (1− ρ2)3/2

and

κ3 =
3δ3ρ

(δα)2 (1− ρ2)5/2
, κ4 =

3δ4(1 + 4ρ2)

(δα)3 (1− ρ2)7/2
.
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• Student’s t distribution. Parametric model on the real line which is symmetric about
µ with scale parameter σ. The density function is, for d degrees of freedom,

Γ
(
d+1
2

)

(πdσ2)1/2 Γ
(
d
2

)
[
1 +

{
(x− µ)2
σ2d

}]−(d+1)/2

, d > 0.

This distribution does not have a cumulant generating function. E(xr) exists as long as
r < d. In particular

κ1 = µ, and κ2 = σ2
d

d− 2
.

Special case of the generalised hyperbolic distribution with γ = 0 and ν < 0. Importantly
the Student t distribution is obtained as a mixture of normals with

x = µ+ σ
g√
c/d

, g ∼ N(0, 1), c ∼ Γ

(
d

2
,
1

2

)
,

where g and c are independent. This structure is just a reparameterisation of the symmetric
T (ν, δ, µ) given in Table B.3, where the density is

Γ(ν + 1/2)√
πδΓ(ν)

[
1 +

{
(x− µ)2

δ2

}]−ν−1/2
.

In particular we have that

ν =
d

2
, δ2 = σ2d.

This demonstrates that the more general T (ν, δ, β, µ) can be thought about as a skewed
student-t distribution.
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Distribution σ2 Density function

GH(ν, α, β, µ, δ) GIG(ν, δ, γ) (γ/δ)ν

√
2πα(ν−

1

2 )Kν(δγ)

{
δ2 + (x− µ)2

} 1

2
(ν− 1

2
)
K(ν− 1

2
)

(
α
√

δ2 + (x− µ)2
)
eβ(x−µ)

N(µ, σ2) = limγ→∞ σ2 1√
2πσ2

exp
{
− 1
2σ2 (x− µ)2

}

GH(ν, γ, 0, µ, σ2γ)

RH(α, β, µ, δ) RPH(δ, γ)
= GH(−1, α, β, µ, δ)
NIG(α, β, µ, δ) IG(δ, γ) π−1α exp

{
δ
√

α2 − β2 − βµ
}

q
(
x−µ
δ

)−1
K1
{
δαq

(
x−µ
δ

)}
eβ(x−µ)

= GH
(
− 1
2
, α, β, µ, δ

)

HA GIG(0, δ, γ) 1
2α−1K0(δγ)

{
δ2 + (x− µ)2

}− 1

2 exp
{
−α
√

δ2 + (x− µ)2
}
exp {β (x− µ)}

=GH(0, α, β, µ, δ)

NRIG(α, β, µ, δ) RIG(δ, γ)

= GH
(
1
2
, α, β, µ, δ

)

H(α, β, µ, δ) PH(δ, γ)

√
α2−β2

2αδK1

(
δ
√
α2−β2

) exp
{
−α
√

δ2 + (x− µ)2 + β (x− µ)
}

= GH(1, α, β, µ, δ)

La(α, β, µ) Γ
(
1, γ

2

2

)
α2−β2

2α
exp {−α |x− µ|+ β (x− µ)} .

= GH(1, α, β, µ, 0)

NΓ(ν, γ, β, µ) Γ
(
ν, γ

2

2

) γ2ν

(
γ2

2

)
1−2ν

√
2πΓ(ν)2ν−1

K̄ν−1/2

(
γ2

2
|x− µ|

)
exp {β (x− µ)}

= GH(ν, α, β, µ, 0)

T (ν, δ, β, µ) RΓ
(
ν, δ

2

2

)
1√

2πδΓ(ν)2ν−1
q
(
x−µ
δ

)−2ν−1
K̄ν+1/2

{
δβq

(
x−µ
δ

)}
exp {β (x− µ)}

= GH(−ν, β, β, µ, δ)

T (ν, δ, µ) RΓ
(
ν, δ

2

2

)
Γ(ν+1/2)√
πδΓ(ν)

[
1 +

{
(x−µ)2
δ2

}]−ν−1/2

= GH(−ν, 0, 0, µ, δ)

Table B.3: Summary of the GH distribution and its special cases. Recorded are the densities.

where Kν(x) = xνKν(x), q(x) =
√
1 + x2 and α =

√
β2 + γ2. Kν is the modified Bessel function

of the third kind. Here Kν is a modified Bessel function of the third kind.
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B.3.3 Stable based distributions

This class of models is based on aspects of the stable distribution. Let p(x;κ, δ) denote the
probability density function of the positive κ-stable law S(κ, δ) with cumulant transform

−δ(2θ)κ, 0 < κ < 1.

Let p(x;κ, δ, γ) denote the tempered (exponentially tilted) version of p(x;κ, δ) defined by

p(x;κ, δ, γ) = eδγp(x;κ, δ)e−
1
2
γ1/κx, κ ∈ (0, 1), δ > 0, γ ≥ 0. (B.10)

The distribution with density (B.10) will be referred to as a tempered stable law and we denote
it by TS(κ, δ, γ).

Next, consider for any ν ∈ R and γ ∨ (−ν) > 0 the derived probability density

p(x;κ, ν, δ, γ) = c(κ, ν, δ, γ)xν+κp(x;κ, δ, γ), (B.11)

where c(κ, ν, δ, γ) is a norming constant. We denote by MS (modified stable) the class of distri-
butions on the positive halfline whose densities are of the form p(x;κ, ν, δ, γ). Correspondingly,
the law determined by p(x;κ, ν, δ, γ) is denoted MS(κ, ν, γ, δ). The subclass of the family of
MS laws obtained for κ = 1

2 is the class of GIG (generalised inverse Gaussian) distributions.
Correspondingly, and in analogy with the construction of the generalised hyperbolic distri-

butions, a random variable x is said to be distributed according to the normal modified stable
law NMS(κ, ν, γ, β, µ, δ) if it is of the normal variance-mean mixture form

x = µ+ βτ +
√
τε,

with ε ∼ N(0, 1) and τ ∼ MS(κ, ν, γ, δ) and τ and ε independent. The special case of κ = −ν
yields the simpler normal tempered stable NTS(κ, γ, β, µ, δ) law which is based on a normal
variance-mean mixture using the tilted stable distribution.
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International Journal of Theoretical and Applied Finance 3, 549–552.

Boyarchenko, S. I. and S. Z. Levendorskii (2000b). Perpetual American options under Lévy
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towards the Gaussian stochastic process. Physics Review E 52, 1197–1199.

Lebesgue, H. (1902). Integrale, longuer, aire. Annali di Mathematica pura ed applicata 7,
231–359.
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University of Aarhus.

Schoutens, W. and J. L. Teugels (1998). Levy processes, polynomials and martingales. Statis-
tics and Stochastic Models 14, 335–349.

Schoutens, W. and J. L. Teugels (2001). Meixner processes in finance. Unpublished paper:
Eurandom, K.U. Leuven.

Schrödinger, E. (1915). Zur theorie der fall - und steigversuche an teilschen mit brownscher
bewegung. Physikalische Zeitschrift 16, 289–295.

225



Schwert, G. W. (1989). Why does stock market volatility change over time? Journal of
Finance 44, 1115–1153.

Scott, L. (1987). Options pricing when the variance changes randomly: theory, estimation
and an application. J. Financial and Quantitative Analysis 22, 419–438.

Scott, L. (1991). Random-variance option pricing. Advances in Future and Options Research 5,
113–135.

Scott, L. (1997). Pricing stock options in a jump-diffusion model with stochastic volatility
and interest rates: Applications of Fourier inversion methods. Mathematical Finance 7,
413–26.

Shephard, N. (1996). Statistical aspects of ARCH and stochastic volatility. In D. R. Cox,
D. V. Hinkley, and O. E. Barndorff-Nielsen (Eds.), Time Series Models in Econometrics,
Finance and Other Fields, pp. 1–67. London: Chapman & Hall.

Shiryaev, A. N. (1999). Essentials of Stochastic Finance: Facts, Models and Theory. Singa-
pore: World Scientific.

Sichel, H. S. (1973). Statistical valuation of diamondiferous deposits. Journal of South African
Institute of Mining and Metallurgy 73, 235–243.

Stein, E. M. and J. Stein (1991). Stock price distributions with stochastic volatility: an
analytic approach. Review of Financial Studies 4, 727–752.

Stock, J. H. (1988). Estimating continuous-time processes subject to time deformation: an
application to postwar U.S. GNP. Journal of the American Statistical Association 83,
77–85.

Tanner, M. A. (1996). Tools for Statistical Inference: Methods for Exploration of Posterior
Distributions and Likelihood Functions (3 ed.). New York: Springer-Verlag.

Tauchen, G. and M. Pitts (1983). The price variability-volume relationship on speculative
markets. Econometrica 51, 485–505.

Taylor, S. J. (1982). Financial returns modelled by the product of two stochastic processes
— a study of daily sugar prices 1961-79. In O. D. Anderson (Ed.), Time Series Analysis:
Theory and Practice, 1, pp. 203–226. Amsterdam: North-Holland.

Taylor, S. J. (1986). Modelling Financial Time Series. Chichester: John Wiley.

Taylor, S. J. (1994). Modelling stochastic volatility. Mathematical Finance 4, 183–204.

Taylor, S. J. and X. Xu (1997). The incremental volatility information in one million foreign
exchange quotations. Journal of Empirical Finance 4, 317–340.

Thorin, O. (1977). On the infinite divisibility of the lognormal distribution. Scandinavian
Actuarial Journal 47, 121–148.

Tompkins, R. and F. Hubalek (2000). On closed form solutions for pricing options with jump-
ing volatility. Unpublished paper: Technical University, Vienna.

Tweedie, M. (1984). An index which distinguishes between some important exponential fam-
ilies. In J. Ghosh and J. Roy (Eds.), Statistics: Applications and New Directions: Proc.
Indian Statistical Institute Golden Jubilee International Conference, pp. 579–604.

Uhlenbeck, G. E. and L. S. Ornstein (1930). On the theory of Brownian motion. Physical
Review 36, 823–841.

Vervaat, W. (1979). On a stochastic differential equation and a representation of nonnegative
infinitely divisible random variables. Advances in Applied Probability 11, 750–783.

226



Walker, S. and P. Damien (2000). Representations of Lévy processes without Gaussian com-
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Càglàd, 12, 36, 189–191, 196, 199
Cauchy process, 28
CGMY process, 29

see also Extended Koponen class, 45
CGMY process, 29
Characteristic function, 202, 207
Chi-squared distribution, 209
Chronometer, 30, 42, 45, 71, 72, 106, 107

CIR process, 85, 86, 107, 202
Class A0 Lévy process, 198
Class A Lévy process, 198
Class B0 Lévy process, 198
Class B Lévy process, 198
Class C0 Lévy process, 198
Class C Lévy process, 198
Co-breaking, 96
Cointegrate, 96
Compensated Poisson process, 12
Compound Poisson process, 14, 18–20, 22,

31, 33, 36, 38, 51, 99, 190, 198
Compound process, 77
SMc, 189
SSMc, 189
Counting process, 11
Cox-Ingersoll-Ross process, 85
Cumulant, 204
Cumulant function, 10, 32, 202, 204

D-INTOU, 96
D-OU, 96, 203
D-OUm, 88, 203
D-OU process, 79, 80
Deformation, 30, 38
Diffusion, 107, 193
Doléans-Dade exponential, 194
Doubly integrated autocorrelation function,

207
Drift, 21, 33

ECM, 75
EM algorithm, 62, 64, 65

Lagrangian parameter, 64
Equivalent martingale measure, 196
Error correction model, 74
Exponential integral, 51
Exponential Lévy process, 17
Extended Koponen class, 45
Extended Koponen process

also called a CGMY process, 29

F process, 9
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Filtered probability space, 188
Filtration, 194
Finite activity process, 20
Finite variation, 198
FN library, 205
Fractal, 28
French Franc, 65
FTSE, 59

Γ(ν), 203
Γ(ν, α), 203
Gamma density, 21
Gamma distribution, 203, 209
Gamma function, 203
Gamma process, 9, 15, 19, 43, 51, 68, 77
Γ-OU process, 86
OU-Γ process, 98
Gaussian fit, 59
Generalised hyperbolic, 39
GH(ν, α, β, µ, δ), 203
Generalised hyperbolic density, 27, 28, 54,

60
Generalised hyperbolic distribution, 203, 212
Generalised hyperbolic model, 55, 57, 59, 64,

65
Generalised hyperbolic process, 27, 39, 43,

44, 61
Generalised inverse Gaussian, 63
Generalised inverse Gaussian distribution, 203,

209
Simulation of, 209

GIG(ν, δ, γ), 203
Generalised inverse Gaussian process, 17, 20,

43, 44
Generalised inverse Gaussian variable, 18
Geology, 44
German DM, 65
GH Lévy process, 52

Multivariate case, 62, 65, 66
GH Lévy process, 72
GIG Lévy process, 72
Girsanov’s theorem, 195
Girsanov-Meyer Theorem, 196

h̄, 203
Hyperbola distribution, 203
H(α, β, µ, δ), 203
Hyperbola process, 27
Hyperbolic density, 25

Multivariate case, 39
Hyperbolic distribution, 203, 212

H(α, β, µ, δ), 203
Hyperbolic process, 25, 27, 44

i, 203
IG Lévy process, 61
IG-OU process, 98
Increments, 9, 10
Infinite activity, 198
Infinite activity Lévy process, 15
Infinite activity process, 20, 29, 37
Infinitely divisible, 9, 11, 42–45
Integrated autocorrelation function, 207
Integrated variance, 207, 208
INTOU process, 97, 100
INTOU-D, 96
Inverse Gaussian density, 17, 21, 37
Inverse Gaussian distribution, 203
IG(δ, γ), 203
Inverse Gaussian process, 9, 15, 16, 19, 30,

49, 77, 78, 88
Inverse tail integral

Series approximations, 50
Ito algebra, 38, 198, 200
Ito calculus, 43, 197
Ito’s formula, 41, 192, 193

Multivariate version, 197
Ito’s lemma, 193

Japanese Yen, 58
Jump process, 72

K(ζ ‡ x), 204
K (ζ ‡ x), 204
Kν(x), 204
κ́r, 204
ḱ(θ), 204
κr, 204
Kν(x), 205
k(θ), 204
Kumulant function, 10, 42, 204

La(α, β, µ), 205
Laplace density, 26

Multivariate case, 39
Laplace distribution, 26, 205
Laplace process, 25, 27, 43
Lévy density, 19, 21, 28, 29, 42, 51
Lévy

Lévy density, 208
Lévy density, 19
Lévy measure, 18–20, 30, 37, 42, 43, 198,

199, 208
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Lévy measure
Simulation, 43, 68

Lévy process, 10, 107, 198, 208
Definition, 10

Lévy-Ito representation, 36, 37, 199, 200
Lévy-Ito’s formula, 199
Lévy-Khintchine representation, 198
Lévy-Khintchine representation, 18, 20, 21,

30, 42
Likelihood ratio, 194
Likelihood ratio process, 194, 195
Local martingale, 12, 41, 119, 188–191, 193
Locally bounded variation, 41, 119, 189, 191,

196, 198
Multivariate version, 198

Log-normal, 85
Log-normal distribution, 205
Log-price of asset, 208
Lognormal, 45
LN(µ, σ2), 205
Lognormal Gaussian process, 16

M(ζ ‡ x), 205
Martingale, 188, 194–197

Exponential martingales, 197
M, 189
Mc, 189
Mloc, 189
Maximum likelihood estimation

Generalised hyperbolic
Maximum likelihood estimation, 52

Lag truncation parameter, 56
Newey-West estimator, 56
Robust standard errors, 55
Sandwich, 55

Meixner process, 29, 45
Modified Bessel function of third kind, 17
Modified Bessel functions, 204
Moment, 205
Moment generating function, 205
µr, 205
µ′r, 206
Multivariate Lévy process, 38

NETLIB, 205
N(µ, σ2), 206
N(µ, σ2), 205
Normal distribution, 206
Normal distribution function, 207
NΓ(ν, δ, β, µ), 206
Normal gamma density

Multivariate case, 39
Normal gamma distribution, 206
Normal gamma model, 60
Normal gamma process, 25, 27, 29, 43, 44
NIG(α, β, µ, δ), 206
Normal inverse Gaussian density

Multivariate case, 39
Normal inverse Gaussian distribution, 60, 66,

206, 212
Normal inverse Gaussian model, 60
Normal inverse Gaussian motion, 32
Normal inverse Gaussian process, 23, 25, 27,

29, 32, 44, 46, 60, 69
Meixner(a, b, d, µ), 206
NRIG(α, β, µ, δ), 206
Normal reciprocal inverse Gaussian distribu-

tion, 206
Normal reciprocal inverse Gaussian process,

27
Normal tempered stable process, 29, 32, 45

Olsen exchange rate data, 59
Olsen scaling law, 60–62
OUm, 206
OU-D process, 206
OU process, 41, 107, 203, 204, 206
OUm-D, 88
OU-D, 96
OU-IG process, 98
OU-Poisson process, 77
Ox, 205

Paleomagnetism, 44
PH(δ, γ), 206
PHA(δ, γ), 206
Φ (.), 207
φ (ζ ‡ x), 207
Po(ψ), 206
Poisson distribution, 206
Poisson field, 36, 37
Poisson process, 9, 11, 14, 18, 30, 31, 33,

35–38, 43, 49, 50, 76, 82, 99, 199
PolyLog(n, z), 207
Polylog function, 207
Positive hyperbola process, 18
Positive hyperbolic distribution, 206
Positive hyperbolic process, 17
Positive stable process, 9, 20
Predictable, 188–190
Predictable component, 41
Predictable process, 12, 119
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Previsibility, 188

Quadratic covariation, 40, 41, 119, 191
Quadratic variation, 8, 33, 34, 37, 45, 117,

119, 120, 123, 162, 190–192, 194,
199, 202

R, 205
Rν (ω), 207
r(s), 207
Radon-Nikodym derivative, 195
Random walk, 8
RCLL, 12
Realised correlation, 117, 119
Realised covariation, 117
Realised regression, 117, 119
Realised variance, 34, 117–119, 122–125, 127,

128, 130, 135, 137, 142, 150–163,
192, 202

Realised volatility, 118
See Realised variance
Realised variance, 34

Reciprocal chi-squared distribution, 209
Reciprocal gamma distribution, 207
Reciprocal gamma process, 16
Reciprocal inverse Gaussian distribution, 207
Reciprocal inverse Gaussian process, 9, 16
Reciprocal positive hyperbolic process, 17
Reciprocal process, 9
Relatively theory, 44
Return, 208
RΓ (ν, α), 207
RIG (δ, γ), 207
Rosinski rejection method, 49, 82
r∗∗(s), 207
r∗(s), 207

Scale location mixture, 39
Scaling law, 46, 69
SDE, 74
Self-similarity, 45
Self-similiarity, 28
Semimartingale, 12, 13, 36, 188–194, 196,

197, 199, 208
SM, 189
Semimartingales, 41, 117, 118
Shape triangle, 23
Shot noise, 76, 77
Shot noise process, 98
σ(t), 207
Simulating Lévy processes, 43, 48, 68

Skewed Student’s t distribution, 208
Skewness, 39, 58
Special semimartingale, 12, 41, 119, 191, 208

Martingale
Special, 189

SSM, 189
Spectral maxtrix, 56
Spot volatility, 207
Square root process, 85, 107, 202
Stable distribution, 28
Stable process, 28, 45, 68
Steepness parameter, 23
Stieltjes integral, 42
Stochastic analysis, 36
Stochastic differential equation, 41, 107, 193,

194, 196, 197
Stochastic exponentials, 194
Stochastic integral, 12, 190, 199
Stochastic volatility, 41, 45
Student t

Skewed, 57
Student t density

Multivariate case, 39
Student t distribution, 66, 213
Student t process, 43, 45, 60, 68
Skewed, 26, 27
Student’s t distribution, 208
Subordination, 30, 31, 45
Subordinator, 10, 30, 36–39, 42, 45, 72, 199,

208
sup-OU, 208
Superposition, 87, 100, 107, 208
supOU, 89
Survival analysis, 44
Swiss Franc, 58

t, 208
T(ν, δ, β, µ), 208
τ(t) = σ2(t), 207
τ∗(t), 208
Tempered stable process, 21, 32, 44, 49

Simulation of, 49
Testing Lévy processes

Testing
Lévy processes, 52

Time deformation, 8, 45, 71
Truncated Lévy flights, 45
Truncated Lévy flights process, 29
Turbulence, 44
Type G Lévy process, 32, 39
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u(x), 208
u(x), 208
UK Sterling, 58
Upper tail integral, 208
US Dollar, 65

Variance gamma process, 25
Variogram, 93
Volatility, 21
Volatility clustering, 10

W (x), 208
W+(x), 208
W−1(x), 208
w(x), 208

y∗(t), 208
yi, 208

z(t), 208
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