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Abstract 
On the basis of the recommendation of the Basel Committee on Banking Supervision 

to transition from Value-at-Risk (VaR) to Expected Shortfall (ES) in determining 

market risk capital, this paper attempts to investigate whether a Recurrent Neural 

Network provides more accurate VaR and ES predictions of the EUR/USD exchange 

rate compared to the conventional GARCH(1,1) model. A number of previous studies 

has confirmed the forecasting ability of a plain vanilla Feedforward Neural Network 

over traditional statistical models. However, standard neural networks have 

limitations. Most notably, they rely on the assumption of independency among data 

observations, which presents a problem when data points are related in time. To 

circumvent this restriction, this study employs a Gated Recurrent Unit type of neural 

network to produce one-step-ahead volatility forecasts of the EUR/USD exchange 

rate, which are then used to compute VaR and ES predictions. The VaR and ES 

forecasts for both models are obtained through a Volatility Weighted Historical 

Simulation, and evaluated with backtesting procedures. The empirical results indicate 

that the GARCH(1,1) model outperforms the Gated Recurrent Unit neural network for 

VaR95%, while the Gated Recurrent Unit neural network appears more adequate in 

forecasting ES at a 95% confidence level.  

 
Keywords: Value-at-Risk, Expected Shortfall, Recurrent Neural Networks, GRU, 

GARCH(1,1), Exchange Rate Volatility, Intra-day Data 
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1. Introduction 
 

The 2007-2008 global financial crisis has shed light on the deficiencies of traditional 

risk management, resulting in a desire to improve risk management tools and 

practices. The Fundamental review on the trading book (2013) is a popular reform 

initiative taken by the Basel Committee on Banking Supervision to mark its ambition 

to revise and strengthen the regulatory standards for banking institutions. Through 

this consultative document, the Basel Committee supports a change to the risk 

measure used for determining market risk capital, that is, a transition from Value-at-

Risk (VaR) to Expected Shortfall (ES). 

 

In the last two decades, VaR and – to a lesser extent – ES have been used as downside 

risk measures, where both measures contributed greatly to the amelioration	 of 

traditional risk assessment. A wide range of studies has focused on estimating and 

predicting VaR and ES for different financial instruments, among them foreign 

exchange rates. Since the abandonment of the Bretton Woods system, and thereby the 

advent of the floating exchange rate system, the behaviour of exchange rates has 

become increasingly volatile and complex, making its non-linearities more difficult to 

capture. Consequently, the interest in understanding the movements on the Foreign 

Exchange (FOREX) market has increased, as a deeper understanding of foreign 

exchange rate volatility is crucial for the decision-making of both monetary policy 

makers and practitioners. This explains, in conjunction with the rekindled interest for 

further research in forecasting risk, the importance of forecasting both VaR and ES on 

exchange rates. For this purpose, two main approaches are identified in the existing 

literature: conventional volatility forecasting models and Artificial Neural Networks 

(ANNs).  

 

The non-linear GARCH model proposed by Bollerslev (1986) and Taylor (1986) is 

often used to forecast exchange rate volatility. Nonetheless, a considerable 

disadvantage of the GARCH(1,1) model is that it is conceptualized with an explicit 

assumption of the underlying functional relationship of the data series at hand, i.e. it is 

not model-free. Another non-linear model that has gained tremendous popularity in 

the recent years, and that has been acknowledged as an attractive and powerful 

alternative to traditional volatility models is the Artificial Neural Network (ANN). In 
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contrast to conventional volatility forecasting models, an ANN has a flexible non-

linear function mapping capability, and does not require a prior assumption of the 

functional relationship of the dataset. Specifically, an ANN is a machine-learning 

based model inspired by the human brain, which is able to classify patterns and make 

predictions based on past experience. The two main models within the concept of 

ANNs are the Feedforward Neural Network (FNN) and the Recurrent Neural Network 

(RNN), where the main difference between the two lies in the way information 

circulates within the neural network. Unlike the FNN, the RNN allows for loops 

within the network, meaning that the prediction an RNN node makes at time step t 

affects the prediction it will make one moment later, at time step t+1.  

 

The characteristics of RNNs suggest that it should be preferred over FNNs when 

analyzing time-series data. As a matter of fact, several authors, such as Connor et al. 

(1993) and Dunis and Huang (2002), affirm that RNNs accommodate time series data 

better than FNNs. However, in the preponderance of the academic literature, the use 

of a FNN is surprisingly the prevailing choice, despite the suggested superiority of 

RNNs. Furthermore, no justification is provided to explain the choice of using a FNN 

when studying foreign exchange rates. One possible reason could be the 

computational difficulties one faces when implementing a RNN, as it requires a larger 

number of connections and more memory in comparison to a standard FNN. 

Additionally, a plethora of existing research papers focuses on forecasting exchange 

rate returns, rather than predicting their second moment. As argued by Dunis and 

Huang (2002), previous research on implementing a neural network approach “has 

been so far seldom devoted to FX volatility forecasting”. Surprisingly, and to the best 

of our knowledge, no previous paper has examined the forecasting ability of a RNN 

on exchange rate volatility for predicting both VaR and ES. In an attempt to fill this 

theoretical void, the objective of this study is to compare VaR and ES predictions of 

the EUR/USD exchange rate, obtained by: 

 

1) predicting exchange rate volatility with a Recurrent Neural Network 

 

2) predicting exchange rate volatility with the traditional GARCH(1,1) model  
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The remainder of this paper is organized as follows. The next section presents the 

preliminary theory pertaining to the objective of the paper. The third section provides 

a review of the most prominent literature on VaR and ES, the two risk measures of 

interest in this study, as well as on different volatility forecasting models, such as the 

GARCH(1,1) model. Moreover, an evaluation of the prevalent literature on ANNs is 

provided in this section. The fourth section presents a detailed explanation of the 

method employed to model the RNN architecture, and to estimate and predict VaR 

and ES. The fifth section presents the empirical results along with their possible 

implications. Final conclusions and suggestions for further research are discussed in 

the last section. 
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2. Theoretical Background 
 

2.1 Value-at-Risk and Expected Shortfall 

 

2.1.1 Definition 
	

Value-at-Risk (VaR) is a measure used to assess downside risk, which depends on 

two parameters: the time horizon T and the confidence level 𝛼 . VaR is usually 

calculated from the probability loss distribution, where positive values are interpreted 

as losses and negative values as profits. VaR is defined as the smallest loss 𝑙 in a 

portfolio, such that the probability of a future portfolio loss 𝐿, which is larger than 𝑙, 

is less than or equal to 1 − 𝛼: 

 

𝑉𝑎𝑅),+ 𝐿+ = 𝑚𝑖𝑛 𝑙: Pr 𝐿+ > 𝑙 ≤ 1 − 𝛼 										(1) 

 

Following this definition, VaR can statistically be interpreted as the 𝛼-quantile of the 

probability loss distribution, with 𝛼 being the chosen confidence level: 

 

𝑉𝑎𝑅),+ 𝐿+ = 𝑞) 𝐿+ 										(2) 

 

Expected Shortfall (ES) is derived such that it takes the average of all VaR values 

over all confidence levels above 𝛼. As such, ES calculates the expected loss at time T 

conditional on the future portfolio loss 𝐿 being greater than the 𝛼-quantile of the loss 

distribution: 

 

𝐸𝑆),+ 𝐿+ = 𝐸 𝐿: 𝐿 > 𝑉𝑎𝑅),+ 										(3) 

 

In contrast to VaR, ES quantifies the expected loss beyond the VaR level by 

considering the largest losses in a portfolio, i.e. losses larger than 𝑉𝑎𝑅),+. Following 

the mathematical expression of ES presented above, a VaR estimate or forecast must 

be calculated in order to compute an ES estimate or forecast. For this purpose, 

parametric and non-parametric approaches are of use. 
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2.1.2 Parametric and Non-parametric Approaches 
	
Parametric approaches assume that portfolio losses follow a pre-determined 

distribution, such as a Normal distribution or a Student t-distribution, whereas non-

parametric approaches do not depend on any distributional assumption. Instead, non-

parametric approaches focus directly on the underlying loss distribution of a portfolio, 

by relying on a sample of observed losses. As a result, these approaches are 

applicable to any instrument, while parametric approaches, such as the Normal 

distribution, might not be. For example, under normality, the probability loss 

distribution is assumed to have no excess kurtosis, however, it has been empirically 

observed that financial data indeed exhibits excess kurtosis. Thus, assuming normally 

distributed losses when using financial data may lead to incorrect VaR and ES 

estimates.  

 

On the other hand, non-parametric approaches are too dependent on the sample of 

observed losses. They may provide underestimated VaR and ES estimates or forecasts 

if the chosen sample reflects a relatively stable period or otherwise, overestimated 

VaR and ES estimates if the chosen sample reflects a stressed period. Additionally, an 

important drawback of non-parametric approaches is the assumption of identically 

and independently distributed returns, which has empirically been proven untrue, due 

to the existence of serial correlations and volatility clustering. In practice, financial 

institutions use non-parametric approaches to calculate VaR and ES for market risk, 

where the Basic Historical Simulation (BHS) and the Volatility Weighted Historical 

Simulation (VWHS) are among the most popular ones.  

 

Through the BHS, calculations of VaR and ES estimates are based on the empirical 

loss distribution, consisting of collected past data. Each loss observation is given the 

same probability, meaning that older loss observations are as relevant as newer loss 

observations. The BHS approach expects the number of losses larger than 𝑉𝑎𝑅),+ to 

be equal to 1 − 𝛼 𝑁, with 𝑁 representing the number of sample loss observations. 

Thus, 𝑉𝑎𝑅),+ is estimated to be the 1 − 𝛼 𝑁 + 1 largest loss in the sample and 𝐸𝑆),+ 

is computed as an average of the 1 − 𝛼 𝑁 largest losses. 
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The VWHS approach, introduced by Hull and White (1998), applies a BHS to a 

sample of rescaled losses, and is considered more relevant for time-series data than 

the BHS. By using rescaled losses, the VWHS takes current market conditions into 

account, which is highly relevant when analyzing time dependent series, such as 

financial data. Indeed, financial data manifests signs of volatility clustering, which is 

a phenomenon describing the fact that if volatility in the current holding period is 

lower than the average, it will likely be lower than the average in the next holding 

period as well. The reverse is also true with an observed volatility that is higher than 

the average. Through the VWHS approach, VaR and ES reflect these specific 

volatility patterns, as a result of the rescaling of the sample losses with a volatility 

forecast: 

 

𝑙?@ =
𝜎?BC
𝜎?

		.		 𝑙?											(4) 

 

where 𝑙?@ is the rescaled loss at time 𝑇, 𝜎?BC the volatility forecast for the next holding 

period and 𝜎? the volatility associated to the sample loss 𝑙? observed at time 𝑇.  

 

Among the various existing volatility models, GARCH (1,1) and the Exponentially 

Weighted Moving Average (EWMA) approaches are often employed to obtain 

volatility forecasts. A BSH is subsequently applied to the rescaled sample of losses, in 

order to calculate VaR and ES. 

 

2.1.3 Backtesting Value-at-Risk and Expected Shortfall 
 

Following the estimation of VaR and ES, backtesting is of great importance as it 

allows one to assess the efficiency of a risk measure. Kupiec (1995) introduces the 

main ideas behind the backtesting procedure for VaR, where the so-called Kupiec 

frequency test, an exact binomial test, compares the actual frequency of VaR 

violations, denoted 𝑘, with the predicted frequency of VaR violations. For a given 

day, a VaR violation; also called exception (Hull (2006), Acerbi and Szekely (2014)), 

occurs when the observed loss is larger than the VaR estimate. Accordingly, the 

number of predicted VaR violations should then be equal to 1 − 𝛼 𝑁, which is the 

expected number of losses larger than the VaR estimate. Since the number of VaR 
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violations has a binomial distribution, the probability of observing 𝑋 ≤ 𝑘 violations 

under the assumption of a correct underlying model is defined as follows: 

 

Pr 𝑋 ≤ 𝑘 = 𝑁
𝑖

I

JKL

𝑝J 1 − 𝑝 NOJ										(5) 

 

where 𝑝 is the probability of a VaR violation on any given day. If the calculated 

probability is less than (1 − 𝛼), i.e. the significance level of interest, the underlying 

VaR model is statistically rejected, that is to say that the actual frequency of VaR 

violations deviates significantly from the predicted one. In practice, backtesting VaR 

proves itself to be conceptually easier than backtesting ES, which is arguably less 

straightforward. As mentioned previously, the difficulty to backtest ES is the main 

reason to why financial institutions have been reluctant to support the Basel 

Committee’s initiative to choose ES as the standard risk measure over VaR. 

 

Acerbi and Szeleky (2014) propose three different backtests for ES, and according to 

the authors, these tests “introduce no conceptual limitations nor computational 

difficulties of any sort”. The second test called “testing ES directly” is 

computationally attractive, as it requires the estimation of only two parameters: the 

one-day ahead ES and the magnitude of a loss if a VaR violation occurs (𝐿+𝐼+). 

Moreover, the critical level associated with the second test is remarkably stable across 

various distributional assumptions for a 5% confidence level, and is estimated to be -

0.70. The aforementioned mathematical expression of ES can be rewritten as:  

 

𝐸𝑆),+ 𝐿+ = 𝐸 𝐿: 𝐿 > 𝑉𝑎𝑅),+ =
𝐸 𝐿+𝐼+
1 − 𝛼

										(6) 

 

Given a confidence level 𝛼, the indicator function 𝐼+ is defined such that it takes on 

the value 1 in the case of a VaR violation and the value 0 if no VaR violation occurs: 

 

𝐼+ =
1							𝑖𝑓			𝐿+ > 𝑉𝑎𝑅),+(𝐿+)	
0							𝑖𝑓			𝐿+ < 𝑉𝑎𝑅),+(𝐿+)

										(7) 
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Under the null hypothesis, the underlying ES-model is correct, implying that it 

provides an efficient ES estimate. The test statistic 𝑍 proposed by Acerbi and Szeleky 

(2014) is defined such that:  

 

𝑍 = −
1

𝑇 1 − 𝛼
𝐿+𝐼+

𝐸𝑆),+ 𝐿+
+ 1

?

+KC

										(8) 

 

If the null hypothesis is rejected, the underlying model underestimates ES. As 

mentioned previously, the authors suggest comparing the value of the test statistic 

with a critical value of -0,70 when a 95% confidence level is chosen. 
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2.2 GARCH(1,1) 

 

As previously indicated, it has empirically been observed that financial data is subject 

to the phenomenon of volatility clustering due to the time-varying characteristic of the 

variance of financial returns. An appropriate stochastic process to model volatility 

clustering would therefore be one with a non-constant conditional variance. A 

GARCH (1,1) model fulfils this condition, as it allows the conditional variance to be 

dependent on its past values. Thus, a GARCH model does not only provide a measure 

of the conditional mean, but of the conditional variance as well. Assuming that the 

return of a financial asset, 𝑟+ , depends on a stochastic error term, 𝜂+,  and on the 

expected return, µ, then the mean equation, the variance equation and the expression 

of the residuals used in the GARCH(1,1) are defined respectively as: 

 

𝑟+ = 𝜇 + 𝜂+										(9) 

 

𝜎+^ = 𝜔 + 𝛼𝜂+OC^ + 𝛽𝜎+OC^ 										(10) 

 

𝜀+ =
𝜂+
𝜎+^
		~	𝑡),de										(11)

 

 

As time-varying variance is assumed, i.e. non-linearity, Maximum Likelihood (ML) is 

used to estimate the relevant parameters. ML is an optimization method that 

maximizes the likelihood of a set of parameters 𝜃 , defined in this case as 𝜃 =

	𝜔, 𝛼, 𝛽, 𝜇. Some restrictions on the parameters should be set, in order to allow for 

mean-reverting volatility and positive conditional variance: 𝛼 + 𝛽 < 1  and 𝜔 ≥

0, 𝛼 ≥ 0, 𝛽 ≥ 0. The log likelihood function for a Student t-distribution is such that: 

 

	ln 𝐿 𝜇, 𝜔, 𝛼, 𝛽 = 𝑇𝑙𝑛
Γ 𝑣 + 1

2

𝜋 𝑣 − 2 Γ v
2

−
1
2
	 	ln 𝜎+^ −

(𝑣 + 1)
2

	 𝑙𝑛 1 +
𝜀+^

𝜎+^(𝑣 − 2)

?

+KC

?

+KC

											(12) 

 

1	𝑣, degrees of freedom.	
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After the optimization of the parameters, the estimated values are the ones that 

maximize the likelihood that 𝜃 produced the data that was actually observed. These 

values are then used to produce volatility estimates.  
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2.3 Artificial Neural Networks 

 

An Artificial Neural Network, ANN, is a deep learning system that loosely mimics 

the human brain’s ability to classify patterns and make predictions based on past 

experience. In general, an ANN builds on a collection of connected nodes called 

neurons, which schematically resemble the neurons in the biological brain. Just like 

the synapses in the brain, each connection in an ANN can transfer a signal from one 

neuron to another (Gately, 1996). 

 

However, unlike the brain which relies on inputs from the five senses, the inputs in an 

ANN are real numbers from labelled datasets. Object recognition is a common 

example of a task for an ANN, where the network is presented with a number of 

images of a certain type, and by analyzing the recurring patterns in the presented 

objects, the network learns to categorize new images.  

 

2.3.1 Neural Network Architectures  
 

The manner in which the input neurons produce a certain output is intimately linked 

to the structure of the neural network. In terms of foreign exchange rate forecasting, 

two fundamentally different classes of network architectures are identified, both of 

which will be outlined below.  

2.3.1.1 Multilayer Feedforward Neural Network 

In a multilayer feedforward neural network, the neurons are organized into one input 

layer, one or more hidden layers, and one output layer, where each neuron in a 

particular layer is connected with all neurons in a subsequent layer. The information 

flow in the network is of feedforward type, meaning that the output from one layer of 

neurons feeds forward into the next layer of neurons. In other words, the connections 

can never skip a layer, or form any loops backwards. The architectural layout of a 

multilayer feedforward neural network for the case of a single hidden layer is 

presented in Figure 1.  
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Figure 1: Overview of a fully connected multilayer feedforward neural network with one hidden layer. 

As shown in Figure 1, input values are forward propagated into the hidden layer 

through connections, each being characterised by a certain weight coefficient, 𝑤J,o . 

These weight coefficients reflect the degree of importance of a given connection 

between an input node, 𝑥J,+, and a hidden node, ℎo,+. By defining the input signals as a 

vector 𝑥C,+; 𝑥^,+; 	… ; 𝑥t,+	  and the values of the hidden nodes as a vector 

ℎC,+; ℎ^,+; 	… ; ℎu,+	 , the transformation of the input nodes to one hidden node can 

mathematically be described by:  

ℎo,+ = 𝑤J,o ∙ 𝑥J,+

t

JKC

𝑓𝑜𝑟	𝑗 = 1,2, … ,𝑚										(13) 

  

An apparent undesired property of the formula is given by its linear representation, 

which, if applied, would suggest that the output prediction would be a linear function. 

Consequently, in order to deal with the non-linear characteristics inherent to most real 

world data, a non-linear activation function, ∅(∙), is applied to the weighted sum of 

inputs into a hidden node. This activation function, which in the majority of 

applications takes the form of a sigmoid function or a ReLu function, makes the neural 
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network capable of approximating virtually any function. However, before applying 

the activation function, a bias vector 𝑏C; 𝑏^;	… ; 𝑏u	  is added, which essentially 

indicates whether a neuron tends to be active or inactive in the prediction process. The 

transformation from the input layer to the hidden layer in a feedforward neural 

network can then be reformulated to:  

 

ℎo,+ = ∅ 𝑏o,L + 𝑤J,o ∙ 𝑥J,+

t

JKC

	𝑓𝑜𝑟	𝑗 = 1,2, … ,𝑚										(14) 

In order to determine the accuracy of the feedforward neural network, a loss function, 

𝐿 ∙ ,	is introduced. This function is ultimately a measurement of how wrong the 

neural network is in terms of its ability to estimate the relationship between the inputs 

and a particular output. Typically, the loss function is expressed as the difference 

between the predicted output and the expected output, where the robustness of the 

network increases with the decrease of the loss function. The most commonly used 

loss functions are the Mean Absolute Error (MAE), the Mean Squared Error (MSE) 

and the Mean of the Fourth Power Error (MFPE), defined as: 

𝐿{|} =
1
𝑁

𝑦I − 𝑦I

N

IKC

										(15)		 

			𝐿{�} =
1
𝑁

𝑦I − 𝑦I ^
N

IKC

								(16)			 

	𝐿{��} =
1
𝑁

(𝑦I − 𝑦I)�
N

IKC

						(17) 

where 𝑦I is the predicted output and	𝑦I is the true output for a training set k = 1, 2, 

…, N. The primary objective of the feedforward neural network training process is 

therefore to find the weights and biases that minimize the loss function. For this 

purpose, Haykin (2009) and Bishop (2006) endorse the use of the gradient descent 

through a backpropagation optimization algorithm by emphasizing its practical 

simplicity, but also its computational efficiency. The general idea behind the gradient 

descent is to optimize the weights in the network by computing the partial derivative 
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of the loss function with respect to the weights and biases. By doing so, each weight’s 

contribution to the loss function is determined. The partial derivatives are given by: 

𝜕𝐿
𝜕𝑤C,C

, … ,
𝜕𝐿

𝜕𝑤t,u
,
𝜕𝐿
𝜕𝑏C

, …
𝜕𝐿
𝜕𝑏t

 

The sign of each partial derivative conclusively determines in which direction the 

weights should be nudged in order to incrementally decrease the produced total error 

of the network. If the sign is positive, it means that it negatively impacts the loss; 

hence the weight should be decreased. Similarly, if the sign is negative, the weight 

should be increased. The modification of weights is performed iteratively until the 

discrepancy between the predicted output and the expected output reaches its 

minimum point, at which the training process stops. 

The magnitude of the updated weights is determined by a learning rate 

hyperparameter. As explained by Haykin (2009), a lower learning rate implies that the 

changes to the synaptic weights will be smaller from one iteration to the next, 

resulting in a smoother trajectory. However, this improvement is attained at the cost 

of excessive computational time. On the other hand, a learning rate set too high may 

lead to instability of the network as the resulting large weight steps may overshoot the 

minimum point. As a result, this leaves the designer of the network to try different 

heuristics based on trial and error.  

Although the model-free assumption underlying the feedforward neural network 

theoretically suggests that it should fare better than the conventional GARCH(1,1) in 

predicting exchange rate volatility, the feedforward neural network is subject to a 

major concern in that it precludes modelling time-dependencies in the data. This 

deficiency of not being able to take correlations between inputs into account is 

however resolved in the recurrent neural network, which is able to selectively pass 

information across sequences of elements by creating cycles in the network.   
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2.3.1.2 Recurrent Neural Network 
	

Contrary to multilayer feedforward neural networks, Recurrent Neural Networks 

(RNN) are able to handle sequential data due to the capability of each neuron to 

maintain information about previous inputs. This means that the prediction a recurrent 

neural network node made at time step t-1 affects the prediction it will make one 

moment later, at time step t. By taking as inputs not only the current signal, but also 

what has been perceived previously in time, RNN nodes can be thought of as having 

“memory”. Adding memory to neural networks has an important purpose: because 

there may be information in the data sequence itself, recurrent nets are able to use it to 

perform prediction tasks that feedforward networks cannot. 

In order to preserve information from one node to another while reading in inputs, 

RNNs contain feedback loops from the so-called hidden states. This feedback loop 

mechanism occurs at each time step in the data series, which results in each hidden 

state containing traces not only of the previous hidden state, but also of all the 

preceding ones, for as long as the memory of the network persists (Skymind, 2019). 

To better describe the distinction between feedforward neural networks and recurrent 

neural networks, a representation of an unrolled RNN is presented in Figure 2.  

 

 

 

 

 

 

 

 

 

Figure 2: Representation of an unrolled plain vanilla recurrent neural network. 
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The unrolled RNN illustrates how the network allows the hidden neurons to see their 

own previous output, so that their subsequent behavior can be shaped by previous 

responses (Tenti, 1996). Furthermore, by introducing time-lagged model components, 

it becomes evident that the utilization of a RNN is particularly desired when there are 

time dependencies in the data series at hand.  

Using the previous notation and assuming that the hidden states are the ones looped 

back, the output from a hidden node in the RNN model depends on the input values at 

time t, but also on its own lagged values at order p as shown below:  

 

ℎo,+ = ∅ 𝑏o,L + 𝑤J,o ∙ 𝑥J,+

t

JKC

+ 𝛾o ∙ ℎo,+O�

u

oKC

	𝑓𝑜𝑟	𝑗 = 1,2, … ,𝑚										(18) 

 

where ℎo,+O� represents the lagged hidden state values at order p, and 𝛾o a coefficient. 

The training process of a RNN is similar to the one of a multilayer feedforward 

network. The standard backpropagation algorithm is used to update the weight 

connections, however, because the gradient at each output depends on the calculations 

at all previous time steps, the value of the gradient has a tendency to vanish when 

approaching the earliest time steps. Effectively, this prevents the weights of the earlier 

inputs from being adjusted, which is a serious issue as it deteriorates the training 

process and thereby degrades the performance of the network. As a consequence, the 

plain vanilla RNN might forget what it has seen in longer sequences, thus having a 

short-term memory.  
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2.3.1.3 Gated Recurrent Unit 

The Gated Recurrent Unit (GRU) network is a sophisticated type of recurrent 

network, explicitly designed to combat the long-term dependency problem inherent to 

the plain vanilla RNN. To solve the vanishing gradient problem, the GRU network 

contains internal mechanisms called gates, which regulate how previous information 

should be incorporated into the current output. In particular, the architecture is 

composed of an update gate and a reset gate connected to the hidden states. The 

update gate helps the model to determine how much of past information needs to be 

passed along to the future, while the reset gate is used to decide how much of past 

information should be forgotten. As such, these gates act on signals they receive, 

where they block or pass on information based on its strength and importance. If the 

memory content is considered important, the reset gate will be closed and carry the 

content across several consecutive time steps, which is equivalent to capturing a long-

term dependency (Chung, 2015). In contrast, a neuron may decide to reset the 

memory content by opening the forget gate.  

In analogy with the input nodes and hidden states, the update gates and reset gates 

have their own set of weights, which are adjusted via the recurrent network learning 

process. That is, the gates learn when to allow content to enter, or be deleted through 

an iterative process via the gradient descent algorithm. Owing to the attractive 

characteristics of the GRU, this particular network will be used to forecast volatility 

of the EUR/USD exchange rate. To illustrate how data flows and is controlled by the 

gates, a short sequence of the GRU recurrent network is presented in Figure 3, and a 

single GRU cell is displayed in Figure 4. 
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Figure 3. Structure of the GRU network chain. The operations within the GRU cell eliminate the 

vanishing gradient problem as the model keeps relevant information and passes it down to the next 

time steps of the network. In the figure, the GRU cell combines new input, 𝑥J,+ , with the previous 

memory contained in ℎJ,+OC to produce the new hidden state, ℎJ,+ 

 
 
 

  

 

Figure 4. A visualization of the information flow in a single GRU cell with an activation function set to 

sigmoid. Each line in the figure carries an entire vector from the output of one node to the input of 

another. R and Z denote the reset and update gate, respectively. For a deeper understanding of the 

operations within the GRU cell, the reader is referred to Nguyen (2018). 
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3. Literature Review  
 

The purpose of this section is to present a comprehensive overview of the most 

renowned literature on value-at-risk and expected shortfall, statistical forecasting 

models and artificial neural networks. The chapter begins by exploring the cardinal 

studies covering the concepts of value-at-risk and expected shortfall. This is followed 

by an evaluation of the prevalent literature on conventional exchange rate risk 

forecasting models. Thereafter, the body of literature covering the use of artificial 

neural networks to provide volatility predictions is introduced, while outlining 

weaknesses inherent to previous studies completes the section. 

 

3.1 Value-at-Risk and Expected Shortfall 

 

3.1.1 Advantages and Shortcomings of Value-at-Risk 
 

In financial risk management, Value-at-Risk (VaR) is acknowledged as a standard 

and comprehensive measure to estimate the total risk in a portfolio. According to 

Yamai and Yoshiba (2002), the attractiveness of VaR lies in “its conceptual 

simplicity, computational facility, and ready applicability”. Indeed, VaR is easily 

interpretable as it quantifies portfolio risk in a single number (Jorion, 1997). 

Additionally, VaR is applicable to any financial instrument and uses the same unit of 

measurement, “money loss”. However, various studies challenge the effectiveness of 

VaR as a risk measure and argue that VaR exhibits several conceptual drawbacks.  

 

Artzner et al. (1997, 1999) demonstrate the conceptual problems inherent to VaR by 

using two different situations; a short position on digital options and a concentrated 

credit portfolio. Based on their results, Artzner et al. (1997, 1999) conclude that VaR 

is not subadditive when normality is not assumed, and takes no account of tail-events 

if they occur, nor provide information on their severity. As a remedy to these 

conceptual drawbacks, Aztner et al. (1997,1999) introduce the concept of a coherent 

risk measure, which satisfies several desirable properties, such as subadditivity. 

However, Aztner et al. (1997, 1999) and Rootzén and Klüppelberg (1999) point out 
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that the pertinency of the subadditivity problem to risk managers depends on their 

preferences and can be irrelevant to some.  

 

Whereas the relevancy of the subadditivity problem is contingent on risk managers’ 

discretion, the so-called fat tails problem is recognized as the most problematic 

shortcoming of VaR. Indeed, the characteristics inherent to the tails of the loss 

distribution are of importance in financial risk management. Danielsson et al. (1998) 

examine the ability of VaR to model tails’ behavior and explain that risk managers are 

concerned about the occurrence and size of large losses beyond VaR, especially when 

there is suspicion of a fat-tailed distribution. More precisely, modelling the behavior 

of the right tail of the loss distribution is crucial in financial risk management, 

considering that events occurring in the right tail are threats to institutional solvency, 

as explained by the Basel Committee on Banking Supervision (2013). 

 

3.1.2 Transition from Value-at-Risk to Expected Shortfall 
 

In response to these critics, other risk measures were developed and introduced, such 

as the worst conditional expectation (WCE), presented by Artzner et al. (1999). The 

WCE was introduced as a coherent risk measure, which can capture the behavior of 

the loss distribution. However, despite being coherent, WCE lacks practicality due to 

computational difficulties. Acerbi et al. (2001) succeed to construct a risk measure 

that is coherent and straight-forward in its computation, namely Expected Shortfall 

(ES). They define ES as “the expected value of the loss of the portfolio in the 5% 

worst cases in 7 days”, when considering a time horizon of 7 days and a probability of 

5%. The mathematical definition provided by Acerbi et al. (2001) shows the 

subadditivity of ES in all cases, without any specific distributional assumption. Thus, 

Acerbi et al. (2001) claim that, if correctly estimated, ES is a satisfactory replacement 

of VaR for financial risk management uses.  

 

Emmer et al. (2013) find that ES seems to be a superior risk measure, when compared 

to VaR and Expectiles. Yet, they put emphasis on the difficulty of backtesting ES, 

whereas backtesting VaR is rather uncomplicated. In contrast, Acerbi and Szekely 

(2014) claim that ES indeed can be backtested and introduce “three model-free, 

nonparametric backtest methodologies” for ES. They show that these backtesting 
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methods are superior to the standard Basel backtest for VaR, whereby the authors 

simultaneously answer to the criticisms made to the Basel Committee for choosing ES 

over VaR, despite its supposedly impossible backtesting. Indeed, the Basel 

Committee on Banking Supervision (2013) stated the necessity to transition from VaR 

to ES after identifying various deficiencies when using VaR to assess regulatory 

capital requirements. The Committee’s decision to adopt ES as a standard risk 

measure over VaR reflects the various discussions regarding the coherence and 

relevancy of VaR as a risk measure. 
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3.2 Conventional Statistical Forecasting Models 

 

3.2.1 Characteristics of Exchange Rates 
 

Although the concepts of VaR and ES appear simple and rather straightforward, 

producing robust VaR estimates is in fact a challenging statistical task, as it requires 

accurate and reliable measures of volatility. Dating back to Mandelbrot (1963) and 

Fama (1965), it is now a well documented fact that time series of exchange rates tend 

to be characterized by leptokurtosis and conditional heteroscedasticity, the latter 

producing positive serial correlation in squared returns. These features of exchange 

rate series imply that the null hypothesis of independence can be strongly rejected, 

demonstrating the existence of non-linearities in exchange rates. Zhang et al. (1998) 

emphasize this fact by stating that forecasting time series has long been the domain of 

linear statistics. However, real world systems are often non-linear, hence it is 

unreasonable to assume a priori that a particular realization of a given time series is 

generated by a linear process.  

 

3.2.2 GARCH(1,1): An Exchange Rate Volatility Forecasting Model 
 

In the wake of the findings by Mandelbrot (1963) and Fama (1965), a broad array of 

studies was carried out in order to shed light on the phenomenon of volatility and 

capture the dynamics of time series data. The GARCH(1,1) model, originally 

proposed by Bollerslev (1986) and Taylor (1986), gained tremendous popularity and 

was considered ground-breaking due to its ability to capture the salient features of 

volatility in financial data. Nevertheless, an important characteristic inherent to the 

conventional GARCH(1,1) model concerns the symmetry in the conditional variance. 

As stated by Nelson (1991), the GARCH(1,1) model exhibits a fundamental 

shortcoming as it neglects the well-established property that returns are negatively 

correlated with changes in volatility, i.e. volatility tends to rise in response to bad 

news and fall in response to good news. In other words, GARCH models assume that 

only the magnitude and not the sign of unanticipated excess returns determine the 

conditional variance.   
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As a consequence of the impediments inherent to the traditional GARCH(1,1) model, 

different extensions have been proposed in the literature that allow for the presence of 

asymmetries and other departures from the standard GARCH specification. These 

include the E-GARCH model developed by Nelson (1991), the GJR-GARCH model 

of Glosten et al. (1993) and the T-GARCH by Zakoian (1991). 

 

An extensive review of 93 papers on the forecasting ability between the asymmetric 

models and the traditional GARCH(1,1) is provided by Poon and Granger (2003). 

Across the evaluated sample, the authors find that models incorporating volatility 

asymmetries perform better than GARCH. However, the authors simultaneously 

stress upon the fact that an explicit consideration should be given to the use of varying 

data sets, different sampling frequencies and the variety of evaluation techniques. In 

contrast to the findings by Poon and Granger (2003), Hansen and Lunde (2005) find 

that the GARCH model produces better volatility predictions for exchange rates, but 

when the focus is switched towards stocks, models incorporating leverage effects are 

found to be more suitable. Closely related results have been reported by Liu and Hung 

(2010).  

 

3.2.3 Drawbacks of Traditional Volatility Models 
 

A considerable disadvantage with the standard volatility models is that they are 

conceptualized with an explicit assumption of the underlying functional relationship 

of the data series at hand, i.e. they are not model-free. As stated by Zhang et al. 

(1998), the formulation of a nonlinear model to a particular data set is in fact a major 

challenge due to the existence of a vast number of possible nonlinear patterns, 

implying that a certain pre-specified nonlinear model may not be general enough to 

capture all the important features of volatility. Consequently, conventional volatility 

models may be seriously mis-specified and may hence provide poor volatility 

forecasts. Moreover, as pointed out by Chen et al. (2009), with the growing 

globalization of capital markets, the empirical distributions of modern asset returns 

have become more and more complicated, making their market risk more difficult to 

capture. This thorny issue concerning the specification of a correct functional 

relationship has imposed the necessity to bring forward new alternative models that 

are less sensitive to model mis-specification 
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3.3 Artificial Neural Networks 

 

3.3.1 Artificial Neural Network: A Model-free Approach 
 

In the recent literature, a growing attention has been given to the prediction capability 

of artificial neural networks (ANNs). Cybenko (1989) and Hornik et al. (1989) state 

that one of the main advantages of ANNs is that they have a flexible nonlinear 

function mapping capability, meaning that any model can be arbitrarily well 

approximated by a sufficiently large ANN. This model-free property of ANNs is an 

important advantage since exchange rates do not display a specific nonlinear pattern. 
Haykin (2009) extend the notion of flexibility by emphasizing the adaptive capability 

of ANNs, which he argues provides a more robust performance when the system is 

required to operate in a non-stationary environment.  

 

3.3.2 Exchange Rate Return Forecasting Using Artificial Neural Networks 
 

Considerable research effort has gone into feedforward neural networks for predicting 

future values in the foreign exchange rate market. Zhang et al. (1998) employ a 

multilayer feedforward neural network in forecasting the GBP/USD exchange rate 

and find that the neural network outperforms linear models, particularly when the 

forecast horizon is short. Hann and Steuer (1996) find similar results when comparing 

the performance of feedforward neural network models with those of random walk 

and linear models in forecasting the USD/DEM exchange rate using both monthly and 

weekly data. The out-of-sample results show that, for weekly data, neural networks 

outperform the other comparable models. However, when monthly data is used, 

neural networks do not show much improvement over linear models, suggesting that 

the forecasting ability is contingent upon the sampling frequency. Nevertheless, when 

turning to the more recent strand of the literature domain, Kumar and Pradhan (2010) 

document empirical results that favour the implementation of neural networks 

irrespective of the sampling frequency. In their study, a feedforward neural network is 

applied to the Indian Rupee (INR) against the USD, GPB, EUR and JPY, using both 

daily and monthly data. The empirical results confirm the accurate prediction power 

of the neural network for both frequencies. Similar results are reported by Panda and 

Narasimhan (2007). In their study, they show that a feedforward neural network 
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outperforms linear autoregressive and random walk models when creating one-step-

ahead return predictions of the weekly INR/USD exchange rate.  

 

Another strand of the literature has emphasized on recurrent neural networks in 

predicting exchange rates. Kuan and Liu (1995) report a superior prediction accuracy 

of recurrent ANNs over feedforward ANNs in a study on five different currencies 

against the USD, suggesting that despite the requirement of a large number of 

connections and a large memory in the simulation, the richer dynamic structure of 

RNNs is able to yield significantly better results. Several other researchers have 

confirmed the superiority of RNNs over feedforward networks when performing 

exchange rate predictions (Connor et al. (1993), Tenti (1996)). 

 

3.3.3 Exchange Rate Volatility Forecasting Using Artificial Neural 
Networks 

 

By analyzing the literature domain on artificial neural networks, it can be recognized 

that there is an apparent lack of studies investigating exchange rate volatility through 

ANNs. In an attempt to fill this theoretical void, Dunis and Huang (2002) perform a 

comparative study between neural network regressions (NNR), recurrent neural 

networks (RNN) and the simpler GARCH(1,1) model, with an application to the 

GBP/USD and USD/JPY exchange rate volatilities. Using daily data from 1993-2000, 

the empirical results demonstrate that the RNN model appears as the single best 

modelling approach. In a more recent study, Lahmiri (2016) proposes an ANN model 

based on a set of technical indicators as inputs. In his study, the forecast accuracy of 

GARCH family models under different distributional assumptions is compared to the 

ANN in the context of USD/CAD and USD/EUR exchange rate volatilities. He finds 

that the proposed approach based on ANN with technical analysis indicators 

outperforms the conventional GARCH family models in terms of mean absolute error 

and mean of squared errors. Nevertheless, it is worthwhile to mention that although 

foreign exchange volatility forecasting through ANNs have gained some attention in 

the academic field, it still remains a fairly undeveloped area.   
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3.4 Estimating and Predicting Value-at-Risk and Expected 

Shortfall 

Several attempts have been made to predict VaR on the foreign exchange rate market 

with conventional volatility models. Bredin and Hyde (2002) examine a standard 

variance covariance approach, an EWMA approach and an Orthogonal-GARCH 

approach in generating VaR forecasts of the Irish Punt against six different currencies. 

According to their results, the Orthogonal-GARCH model provides the most accurate 

VaR measures, yet they argue that the EWMA approach is the most appropriate as it 

produces more conservative estimates. In a more comprehensive study, Degiannakis 

and Potamia (2016) estimate both VaR and ES across a variety of financial markets; 

stock indices, commodities and foreign exchange rates, with the use of two distinctive 

volatility models. Their research, which is based on the AR(1)-GARCH(1,1) and the 

AR(1)-HAR-RV-skT models, utilizes a 95%, 97.5% and 99% confidence interval, 

with empirical results pointing towards the AR(1)-GARCH(1,1) in terms of prediction 

accuracy. The authors further recommend risk modelling at a confidence level of 

97.5%, which is consistent with the proposed replacement of 99% VaR by 97.5 % ES 

by the Basel Committee.   

 

VaR estimation on the exchange rate market in the context of ANNs is dealt with in 

Locarek-Junge and Prinzler (1999), who illustrate how VaR estimates can be obtained 

by using a USD-portfolio. The empirical outcomes demonstrate an evident superiority 

of the neural network to other VaR models. Similar results are put forth by He et al. 

(2018), who propose an innovative EMD-DBN type of ANN to estimate VaR on the 

USD against the AUD, CAD, CHF and the EUR. The authors find positive 

performance improvement in the risk estimates, and argue that the utilization of an 

EMD-DBN network can identify more optimal ensemble weights and is less sensitive 

to noise disruption compared to a FNN.   

 

However, rather surprisingly, no previous paper has been found to estimate ES 

through ANNs on the foreign exchange rate market. Selected applications, such as 

Musah et al. (2018) and Sun et al. (2008), focus on the stock exchange market. Hence, 

the foreign exchange rate market remains unexplored, which justifies further 

investigation. 
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4. Methodology 
 

The subsequent chapter presents the methodology of the implemented study for 

estimating one-day-ahead VaR and ES of the EUR/USD exchange rate. The first 

section describes the data employed in the study, and explains how the raw data is 

manipulated and the series of interest constructed. Following this, section 4.2 

describes the approach taken to obtain one-day-ahead volatility predictions through 

the GRU neural network, while section 4.3 describes the implementation of the 

GARCH(1,1) benchmark model. Section 4.4 explains how the VaR and ES estimates 

are calculated. Finally, in order to assess the ex-post predictive performance of the 

two models, a backtesting framework is outlined in section 4.5.  

4.1 Data Description and Data Preprocessing 

	
Due to the rather low number of prevalent neural network applications evaluating a 

sample period longer than a decade, the EUR/USD exchange rate data used in this 

study encompasses a time frame beginning in 01.01.1999 and ending in 30.09.2018, 

thus comprising a total number of 7212 days. As a result of the longer sample period, 

this study will show further uniqueness by investigating whether the forecasting 

capability of the neural network persists during various periods of global financial 

turmoils.  

 

The one-step-ahead volatility forecasts used to obtain VaR and ES predictions are 

based on the EUR/USD exchange rate, which is extracted from a historical exchange 

rate database provided by Olsen Financial Technologies. The motivation for 

analyzing this particular exchange rate is given by the fact that it constitutes the 

world’s most actively traded currency pair, making it extremely deep and liquid. In 

terms of sampling frequency, Hansen and Lunde (2004) state that there is an inherent 

trade-off between bias and variance when choosing frequency. Particularly, ultra-high 

frequencies such as tick data are subject to microstructure bid/ask frictions, whereas 

lower frequencies, although avoiding this problem, lose more and more information 

with longer sampling intervals. Following the proposition by Hansen and Lunde 

(2004), a moderate sampling frequency at 5-min intervals is chosen for this study.  
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In terms of data pre-processing, the EUR/USD data series analysed in this study is 

manipulated according to the following two steps.  

 

Step one – Return Calculation. The following continuous compounding 

transformation is used in order to transform the data to return series, thereby keeping 

additivity in time: 

 

𝑟J,+ = ln
𝐹𝑋J,+
𝐹𝑋J,+OC

						(19) 

 

where 𝑟J,+  is the return series on a 5-min frequency and 𝐹𝑋J,+  is the mid-quote 

EUR/USD exchange rate series. The daily return is subsequently obtained by 

summing the 5-min returns.  

 

Step two – Calculation of Realized Variance. Due to the fact that volatility is latent, 

squared 5-min returns are used as a proxy for the variance. This conforms to the 

suggestion outlined by Andersen and Bollerslev (1998), who emphasize that although 

squared daily returns have been chosen as an indicator of daily variance in several 

previous studies, this measure is a noisy estimator, and should instead be replaced by 

the sum of intra-day squared returns. Their suggested alternative proxy, realized 

variance, is calculated as: 

 

𝑅𝑉+OC;+
(N) = 𝑟J,+^

N

JKC
					𝑖 = 1,… ,7112										(20)				 

 

where 𝑅𝑉+OC;+
(N)  is the realized variance during the interval 𝑡 − 1; 𝑡 . 

 

Figure 5 in Appendix A depicts the return series of the EUR/USD exchange rate over 

the total review period, while the distributional characteristics of the realized variance 

series are shown in Figure 6 in Appendix A, in which prevalence of prominent 

volatility clustering can be observed. Notably, the effect of the global financial crisis 

in 2007-2008 appears to have had strong influence on the exchange rate volatility.  
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[INSERT FIGURE 5 AND 6 ABOUT HERE] 

In terms of software implementations, all analysis concerning the GRU neural 

network is performed by using the Keras package in Python 3.6, with a Tensorflow 

backend. The GARCH(1,1) model is implemented in Eviews.  
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4.2 The GRU Neural Network Model 

 

4.2.1 Portioning the Dataset 
 

In general, it can be observed that the academic field agrees on the separation of the 

sample into a training set and a testing set. Sometimes an additional intermediate set, 

a validation set, is employed in order to avoid overfitting, or to determine the stopping 

point in the training process (Huang et al., 2004). However, it can be observed that the 

existing literature shows no particular consistency in the choice of training and testing 

set sizes. Yao et al. (1996) suggests allocating 70% of the collected data to the 

training set, 20% to the validation set and 10% to the testing set, while Lahmiri 

(2016), Dunis and Huang (2002) and Hann and Steurer (1996) employ a training set 

containing 80% of the total sample and a testing set containing the remaining 20%. In 

further terms of the selection of training sets, Zhang and Hu (1998) perform a 

comparative study using two different training sample sizes in an attempt to test if 

there is a significant difference between large and small training samples in 

forecasting exchange rates. They find that the large sample, consisting of 887 

observations, outperforms the smaller sample of 261 data points.  

 

The aggregated data in this study is divided into three sub-sets; a training set, a 

validation set and a testing set. Following the aforementioned suggestion by Yao et al. 

(1996), the training set is allocated 70% of the collected data, which is utilized for 

model selection purposes, whereas the validation set is allocated 20%, and the testing 

set 10%. The order of the data is preserved due to the presence of time-dependencies 

between observations, and is chronologically fed into the model to further avoid any 

bias when conducting the training. The dates for the data split are reported in Table 1. 

 
Table 1. Dataset splits 

 Start End 

Training 01.01.1999 27.10.2012 

Validation 28.10.2012 08.10.2016 

Testing 09.10.2016 30.09.2018 
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Since both the volatility inputs and the actual outputs of the training set are known 

beforehand when implementing the GRU neural network, the training process is said 

to be supervised. As mentioned previously, the GRU neural network is fed with 

volatility inputs and then trained, in order to generate volatility outputs. The resulting 

outputs are compared with the actual outputs to determine if the predictive power of 

the GRU neural network is satisfactory. While the GRU neural network is trained, the 

same dataset is processed several times in order to find the most appropriate set of 

connection weights, that is, a set of weights within the training set that allows for the 

minimum loss between the predicted outputs and the actual outputs. As such, the 

training process is interpreted as the equivalent of the minimization of the loss 

function. 

 

To evaluate the GRU neural network fit on the training set, the validation set is used 

as a prevention tool against network overfitting. Within the validation set, the hyper 

parameters are fine-tuned to ensure that a decrease in the loss function over the 

training set yields a decrease in the loss function over the validation set as well, or 

else the network is over-fitted and further training is unnecessary. The validation 

process is unbiased as the volatility inputs contained in the validation set are only fed 

to the GRU neural network after the training process, thus avoiding any data 

memorization. 

 

Once the GRU neural network goes through the complete training and validation 

process, it is exposed to the test set in order to evaluate the applicability of the 

network to unknown data. Hence, the testing set corresponds to the evaluation of the 

predictive performance of the GRU neural network onwards in time. The volatility 

outputs obtained through the test process will be used to compute VaR and ES 

predictions.  

 

 

In conformity with the existing literature, all datasets used in the GRU neural network 

are normalized for the purpose of improving the performance of the network. 

Normalization essentially removes the dependence of measurement unit by 

transforming the data into a standardized range of values. In most cases, using 

unscaled data worsens the learning process, leading to an ineffective network 
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(Brownlee, 2016). RNNs are particularly exposed to the consequences of using 

unscaled data, as they are highly sensitive to exploding gradients when the magnitude 

of weight changes is significant between different time steps. A common technique 

for normalizing the data is the min-max scaler: 

 

𝑥� =
𝑥 −𝑚𝑖𝑛�

𝑚𝑎𝑥� − 𝑚𝑖𝑛�
										(22) 

 

where 𝑥� is the normalized data point, 𝑚𝑖𝑛� the minimum value of the data point x 

and 𝑚𝑎𝑥� the maximum value of x. The min-max scaler normalizes the data into the 

range 0,1 . 

 

4.2.2 Fixed Hyper Parameters of the GRU Neural Network 
 

Among all parameters within the GRU neural network, the loss function, the 

optimizer, the performance measure, the batch size and the look back are kept 

unchanged. These fixed hyper parameters are presented below: 

 

• The Mean Squared Error (MSE), defined in equation (16), is chosen as the 

loss function and measures by definition the average squared difference 

between the predicted outputs and the actual outputs.  

 

• The optimizer mirrors the use of the gradient descent method, as it controls the 

magnitude of changes to the weights within the network, with regard to the 

loss gradient. The optimization algorithm Adam is chosen as the optimizer in 

the GRU neural network, because in contrast to the stochastic gradient 

descent, which maintains one single learning rate for all weight updates, Adam 

separately adapts a learning rate for each network weight, and has the 

attractive feature of being able to change learning rate during training 

(Brownlee, 2017). 

 

• The Mean Absolute Error (MAE), defined in equation (15), is used in the 

GRU neural network as a performance measure to assess the model fit while 

training and validating the network. In other words, the MAE is the metric 



37 
	

used to assess the accuracy of the GRU neural network. It is possible to use 

the same metric for the loss function and the performance measure, yet these 

two parameters are specified differently in a large segment of the literature 

review using RNNs. 

 

• The batch size defines the number of inputs that will be propagated in the 

GRU neural network during the training process, and in this case the batch 

size is set to 32, which is a conventional setting. As such, volatility inputs are 

fed in the network through numerous batches, each containing 32 inputs. After 

the propagation of a batch, the network is trained before receiving another 

batch of 32 inputs. This operation is repeated until the end of the training and 

validation processes, i.e. when all inputs are propagated. As the dataset used in 

this study is rather large, using a batch size is relevant, since it allows the 

GRU neural network to use less memory. 

 
• The look back function specifies the number of time steps, i.e. the lagged 

inputs the RNN should use to forecast the desired outputs. As mentioned 

previously, RNNs have difficulties learning long-term time dependencies, 

hence the importance of introducing the GRU, which remedies the short-term 

memory problem of the RNNs. To enforce the ability of the RNN to find 

repeating temporal patterns, the look back function or sliding window 

technique (Frank et al., 2001) is used in combination with the GRU neural 

network. Applying a sliding window technique seems even more relevant, as 

Ben Taieb et al. (2011) discuss the advantages of using such a technique when 

forecasting a single output for each time step, which is the case in this study. 

However, the sliding window should not be too small or the time 

dependencies will not be well captured, nor too large to avoid feeding 

excessively the same inputs, as this could lead to overfitting problems (Frank 

et al., 2001). For all trials, the look back is set to 100 lagged inputs, which 

corresponds to a 3-month period in the data sample.  
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4.2.3 Fine-Tuning the Hyper Parameters 
 

Following the description of the validation process, fine-tuning the hyper parameters 

appears to be critical in order to improve the accuracy of the GRU neural network. 

For this purpose, several trials are run on the training and validation sets, while 

modifying the settings of a few chosen hyper parameters, as presented below: 

 

• An increasing number of neurons in the hidden layer can lead to an increase in 

accuracy of the GRU neural network. For this reason, the number of hidden 

neurons is set to 50 neurons and will then be increased to 100. 

 

• The dropout function is a regularization method used to prevent overfitting by 

allowing the GRU neural network to drop a random set of neurons while 

training the network. Ignoring several neurons for each iteration during the 

training process is necessary, because if the network is fully connected, 

neurons will become interdependent, leading to overfitting of the training data. 

The dropout function is first set to 0.25, implying that 25% of the existing 

neurons within the network will be ignored during the training process. The 

dropout is later set to 0.3, in order to test if the accuracy of the GRU neural 

network increases when the dropout function is increased. 

 

• A simple change of the activation function may as well increase the accuracy 

of the GRU neural network. As such, both the sigmoid and the ReLU 

activation functions will be used.  

 

• The number of epochs can also influence the accuracy of a neural network. It 

refers to the number of times all the training and validation datasets are 

propagated through the GRU neural network. The standard procedure is to 

increase the number of epochs until the chosen metric – in this case the MAE 

– decreases for the validation set, while it continues to increase for the training 

set, i.e. when the training set shows signs of overfitting.  
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4.2.4 Choosing the GRU Architecture 
 

Following the fine-tuning of the hyper parameters, the GRU neural network that 

performs best should be identified. The most accurate GRU neural network is the one, 

which best will minimize the loss function of the validation set. As the MAE is the 

selected performance measure, the most accurate GRU neural network is also the one 

that provides the lowest MAE value.      
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4.3 GARCH(1,1) Volatility Predictions 

	
In order to estimate and forecast one-day-ahead volatilities from the GARCH(1,1) 

model, the daily return series is used as an input, which is specified in the conditional 

mean equation according to: 

𝑟+ = 𝜇 + 𝜂+										(21) 

 

where 𝜇 is a constant and 𝜂+ a random error term at time t. In the empirical estimation 

of the model, the Student t-distribution is utilized for the random errors in order to 

allow for a leptokurtic behavior.  

 

To ensure congruence with the neural network implementation, the data set is divided 

into an in-sample period from 01.01.1999 to 08.10.2016, while the remaining time 

period, 09.10.2016 to 30.09.2018, is reserved for the out-of-sample period. The 

obtained forecasts in the out-of-sample period are static, meaning that the first 

forecast is made on the 09.10.2016, and then additional forecasts are made on each 

consecutive day for the entire out-of-sample period. 
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4.4 Calculation of VaR and ES 

	
As previously introduced, there is a trade-off between using non-parametric and 

parametric approaches predict VaR. Whereas the main drawback of parametric 

approaches is their reliance on a distributional assumption, non-parametric 

approaches may be too slow-paced to take actual market conditions into account. 

However, due to the inherent characteristics of RNNs, it would seem more reasonable 

to use a non-parametric approach when predicting VaR. Given that a RNN is a model-

free, non-parametric approach, which considers the underlying loss distribution of a 

sample in contrast to a parametric approach, should be more appropriate. Indeed, as 

the attractiveness of a RNN lies in its model-free characteristic, this should be 

reflected as closely as possible in the method used to forecast VaR. For consistency 

purposes and to mimic financial institutions’ practices as mentioned in 2.1.2, a non-

parametric approach will also be used to compute VaR, based on volatility forecasts 

obtained from a GARCH(1,1).  

 

In order to minimize the aforementioned drawback of non-parametric approaches, a 

Volatility Weighted Historical Simulation (VWHS) appears to be a better alternative 

to a Basic Historical Simulation (BHS). Hull and White (1998) conclude that using 

volatility forecasts for rescaling, in combination with a BHS, gives better results than 

the BHS itself to calculate VaR predictions. Prior to proceeding with a BHS on a 

dataset containing the losses of nine different currencies, the authors implement a so-

called “volatility updating” based on volatility estimates obtained from the EWMA. 

The “volatility updating”, in combination with a BHS, results in significant 1-

percentile estimates of daily losses for all currencies.  

 
According to the VWHS, the losses are rescaled as shown by equation (4) in 2.1.2. 

Volatility forecasts obtained through the implementation of either a GARCH(1,1) or 

the RNN are used to rescale the daily losses of the EUR/USD exchange rate. 
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Due to the implementation of the look back function within the GRU neural network, 

no estimates are provided for the first 100 days, nor the last day of the training and 

validation sets. Following the same argumentation, no forecasts are available for the 

first 100 days nor the last day of the test set. As all sets work independently of each 

other, the sliding window does not overlap between sets. Consequently, no inputs are 

available to estimate or forecast the first 100 days nor the last day in each set. 

Accounting for the missing days implies a redefinition of the in-sample and out-of-

sample periods when using a GRU neural network, as shown in Table 2. 

 
Table 2. Redefinition of in-sample and out-of-sample periods 

In-sample Out-of-sample 

Training set: 11/04/1999 – 26/10/2012 

Validation set: 05/02/2013 – 07/10/2016 

Test set: 17/01/2017-29/09/2018 

 

For consistency purposes when computing VaR and ES forecasts, the redefinition of 

the aforementioned periods is also applied to the volatility estimates and forecasts 

obtained with the GARCH(1,1) model.  

 

According to the newly defined out-of-sample period, 621 rescaled loss series are 

computed for each implementation. A BHS is then applied to the loss series to obtain 

VaR forecasts for a 95%, 97,5% and 99% confidence level, using a sliding window of 

6288 days. The number of days included in the sliding window corresponds to the 

number of days in the in-sample period, or in both the training and validation sets 

when referring to the GRU neural network. Based on the VaR forecasts, ES forecasts 

for a 95%, 97.5% and 99% confidence level are computed as shown by equation (3) 

in 2.1.1. 
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4.5 Backtesting Value-at-Risk and Expected Shortfall 

 
As mentioned in 2.1.3, the Kupiec test is used to backtest the VaR forecasts obtained 

with the GARCH(1,1) and the GRU neural network. In addition to the one-sided test 

presented in 2.1.3, the Kupiec test can also be implemented with a confidence 

interval, i.e. a two-sided test, which is the backtesting method that will be used in this 

study. To apply the two-sided Kupiec test, the number of VaR forecasts, the 

confidence level under which they were computed, the number of exceptions, as well 

as the desired backtesting confidence level are necessary (Dowd, 2006). Under the 

null hypothesis, the backtested model is not rejected, implying that the number of 

exceptions lies between the lower and upper bounds of the confidence interval. It is 

customary to choose a 95% confidence level for the backtesting and to apply this 

level to different VaR modelling, independently of the chosen VaR confidence level. 

Indeed, the power of the Kupiec test when using higher backtesting confidence levels 

weakens, implying that the two-sided Kupiec test is likely not to reject an incorrect 

model.  As such, a 95% confidence interval will be applied to backtest VaR forecasts 

at a 95%, 97,5% and 99% confidence level. 

 

The second test presented by Acerbi and Szekely (2014) is implemented to backtest 

ES, and the test statistic is calculated as presented by equation (8) in 2.1.3. Following 

the same argumentation as for the choice of the backtesting confidence level for VaR, 

the critical value -0.70 at a 95% confidence level is used to backtest ES forecasts at a 

95%, 97,5% and 99% confidence level.  
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5. Empirical Results 
The subsequent chapter presents and discusses the main empirical findings of the 

stated methodology. Section 5.1 is devoted to the trial results of GRU neural network. 

Section 5.2 presents the in-sample and out-of-sample volatility predictions for both 

the GARCH(1,1) model and the GRU neural network. The final section presents the 

obtained VaR and ES predictions from the two models.     

5.1 Trial Results of the GRU Neural Network 

 
As mentioned in 4.2.3, different trials are used for the training and validation 

processes, in order to find the best performing GRU neural network architecture by 

fine-tuning the hyper parameters. The first trial, as defined in Table 3, is run with a 

considerably large number of epochs and will thus provide an interesting overview of 

the training and validation loss functions’ behaviour. 
 

Table 3. Setup Trial n° 1 

Trial n° Activation function Hidden neurons Epochs Dropout 

1 Sigmoid 50 1000 0.25 

 

[INSERT FIGURE 7 ABOUT HERE] 

Under the circumstances of the first trial, both training and validation loss functions 

are decreasing for a low number of epochs, as shown by Figure 7 in Appendix B. 

However, signs of overfitting appear before the 200th epoch, as the validation loss 

function starts to increase, while the training loss function continues to decrease. At 

approximately the 500th epoch, overfitting is clearly identified since the validation 

loss function is without any doubt greater than the training loss function. As such, 

Trial n°2 and Trial n°3 are run with 500 epochs to disregard the utmost of the 

overfitting, and to confirm the intuition that the lowest loss on the validation set exists 

before the 200th epoch. Yet, as seen in Table 4 and Table 5, the second and third trials 

are fine-tuned for different activation functions. In fact, the second and third trial use 

a sigmoid function and a reLU function respectively. 
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Table 4. Setup Trial n° 2 

Trial n° Activation function Hidden neurons Epochs Dropout 

2 Sigmoid 50 500 0.25 

 

 
Table 5. Setup Trial n° 3 

Trial n° Activation function Hidden neurons Epochs Dropout 

3 reLU 50 500 0.25 

 

[INSERT FIGURE 8 AND 9 ABOUT HERE] 

Figure 8 and Figure 9 in Appendix B corroborate the hypothesis that the solution to 

the minimization problem of the validation loss function resides between the 1st and 

the 200th epoch. Outside of this interval, the validation loss function increases, a 

behavior which can be graphically identified in both Figure 8 and Figure 9, despite 

the different activation functions. In terms of performance measure, the lowest MAE 

value on the validation set is 0.0148 when using a sigmoid function, whereas it is 

0.0127 with a reLU function. Accordingly, the reLU activation function performs 

better than the sigmoid function so far. Moreover, the sigmoid function identifies the 

lowest MAE value at the 98th, 194thth and 200th epochs, while the reLU function does 

at the 132th epochs, implying that it is necessary to decrease the number of epochs in 

order to obtain the lowest MAE value. Thus, further trials defined in Table 6 and 

Table 7 are run with 200 epochs. 

 
Table 6. Setup Trial n° 4 

Trial n° Activation function Hidden neurons Epochs Dropout 

4 sigmoid 50 200 0.25 

 

	
Table 7. Setup Trial n° 5 

Trial n° Activation function Hidden neurons Epochs Dropout 

5 reLU 50 200 0.25 
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As presented in Table 6 and Table 7, both Trial n°4 and Trial n°5 use the same 

settings for all hyper parameters, except the activation function. In order to investigate 

if the sigmoid function is truly outperformed by the reLU function, both activation 

functions are used once more. Depending on the outcome of these two trials, the reLU 

function will be chosen over the sigmoid function if it is still identified as the best 

performing activation function.  

[INSERT FIGURE 10 AND 11 ABOUT HERE] 

Figure 10 and Figure 11 in Appendix B present plots of the loss functions 

corresponding to Trial n°4 and Trial n°5. With 200 epochs, the lowest MAE provided 

by the reLU function on the validation set is equal to 0.0125 at the 101th and 121th 

epoch. On the other hand, the lowest MAE obtained with the sigmoid activation 

function is 0.0140 at the 191th, 193th and 200th epoch. Once again, the reLU function 

outperforms the sigmoid function, suggesting that only the reLU function should be 

used for the upcoming trials. Additionally, the number of epochs can still be 

decreased since the lowest MAE first appears at the 101th epoch, as shown by the 

reLU function. 

 

Following the conclusions drawn from previous trials, Trial n°6 and Trial n°7 use the 

reLU function and a decreased number of epochs, that is 150 epochs. However, the 

number of neurons in the hidden layer differs in each trial, in order to verify if the 

accuracy of the model increases, when the number of hidden neurons increases as 

well. The settings of Trial n°6 and Trial n°7 are presented below in Table 8 and Table 

9. 

 
 
Table 8. Setup Trial n° 6 

Trial n° Activation function Hidden neurons Epochs Dropout 

6 reLU 50 150 0.25 
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Table 9. Setup Trial n° 7 

Trial n° Activation function Hidden neurons Epochs Dropout 

7 reLU 100 150 0.25 

 

[INSERT FIGURE 12 AND 13 ABOUT HERE] 

Figure 12 and Figure 13 in Appendix B provide plots of the loss functions 

corresponding to Trial n°6 and Trial n°7 respectively. According to both plots, the 

training and validation loss function behave similarly, suggesting that the overfitting 

problem occurs at higher epochs. Under both trials, a decrease or an increase of the 

training loss function is in most instances reflected in the evolution of the validation 

loss function. Graphically in Figure 12 and Figure 13, several interesting local 

minima of the training and validation loss functions are identified between the 100th 

and 150th epoch. Hence, the lowest MAE provided by Trial n°6 and Trial n°7 should 

be located between this interval of epochs. As expected, the lowest MAE under Trial 

n°6 occurs at the 146th epoch and is equal to 0.0134. The lowest MAE found under 

Trial n°7, which is equal to 0.0120 and occurs at the 105th epoch, meets the graphical 

expectations as well. Considering the magnitude of each given MAE, the hyper 

parameter settings of Trial n°7 appear to be better as they allow for the lowest MAE 

value out of both trials. Consistently with the findings of Trial n°7, the number of 

epochs should be lowered to 105 for the following trials. 

 
As previously introduced in 4.2.3, different settings of the dropout parameter may 

increase the performance of the RNN. Thus, Trial n°8 and Trial n°9 are set for a 

number of epochs of 105 and a dropout of 0.25 and 0.3 respectively, while keeping 

other parameters fixed in accordance with the settings of trial n° 7. 

 
Table 10. Setup Trial n° 8 

Trial n° Activation function Hidden neurons Epochs Dropout 

8 reLU 100 105 0.25 
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Table 11. Setup Trial n° 9 

Trial n° Activation function Hidden neurons Epochs Dropout 

9 reLU 100 105 0.3 

 

[INSERT FIGURE 14 AND 15 ABOUT HERE] 

Figure 14 and Figure 15 in Appendix B present plots of the loss functions 

corresponding to Trial n°8 and Trial n°9. Under Trial n°8, the lowest MAE is 

identified at the 100th epoch and is equal to 0.0129, whereas the lowest MAE under 

Trial n°9 is identified at the 103th epoch and is equal to 0.0127. A change in the 

dropout parameter does not seem to significantly improve the results, as the lowest 

MAE values provided by both trials only differ by 0.0002, and the difference between 

the necessary number of epochs is very small. Choosing the settings of Trial n°9 

should be preferred as they result in the lowest MAE value and the cost of using a 

higher number of epochs is minimal in this case, i.e. only 3 epochs separate Trial n°8 

from Trial n°9. Consequently, the GRU neural network will be run on the test set 

using a fine-tuning of hyper parameters similar to that of Trial n°9, as shown in Table 

12. 

 
Table 12. Final GRU Neural Network 

Activation function Hidden neurons Epochs Dropout 

reLU 100 105 0.3 
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5.2 GARCH(1,1) and GRU Neural Network Volatility Predictions 

Table 13 in Appendix C displays the in-sample estimation results of the GARCH(1,1) 

benchmark model with a Student t-distribution, covering a time period from 

01.01.1999 to 08.10.2016. As demonstrated by the table, the estimated parameters 

alpha and beta are significant at a 1 % level.  

[INSERT TABLE 13 ABOUT HERE] 

In terms of forecasting accuracy, the one-step-ahead volatility predictions from both 

models are evaluated based on the MSE and MAE metrics. As such, the predictions 

from the two models are compared with the realized volatility proxy across the 

divided data sample. In Table 14, the performance metrics for GARCH(1,1) are 

reported for the entire in-sample as well as for the out-of-sample period, whereas in 

Table 15, the metrics for the training, validation and test sets are displayed in terms of 

the GRU neural network. Furthermore, all metrics are calculated over the newly 

defined samples, following the date modifications required by the look back function, 

as explained in section 4.4. According to Table 14, both the MSE and MAE values in 

the out-of-sample period are lower than the corresponding figures in the in-sample 

period for the GARCH(1,1) model, suggesting that the produced forecasts fit the 

actual realized volatility rather well. To visualize the GARCH(1,1) model’s accuracy, 

the volatility estimates and predictions are plotted together with the ex-post realized 

variance realizations in Figure 16 (cf. Appendix C). The apparent non-continuity in 

the GARCH(1,1) volatility series is consistent with the new date definition.  It can be 

inferred that the GARCH(1,1) model seems to be underestimating volatility during 

the entire window frame, particularly when there are pronounced spikes, such as 

during the dot-com bubble in 2000 and the global financial crisis in 2008.  

Table 14. Average MSE and MAE values for volatility forecasting using GARCH(1,1)	

Model In-sample MSE Out-of-sample 

MSE 

In-sample 

MAE 

Out-of-sample 

MAE 

GARCH(1,1) 1.977EOL� 4.286EOCL 2.786EOL� 1.445EOL� 
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Table 15. Average MSE and MAE values for volatility forecasting using GRU	

Model Training 

MSE 

Training 

MAE 

Validation 

MSE 

Validation 

MAE 

Test  MSE Test MAE 

GRU-

RNN 1.072EOL� 1.556EOL� 1.950EOL� 2.414EOL� 2.880EOCL 1.056EOL� 

 

[INSERT FIGURE 16 ABOUT HERE] 

The results in Table 15 suggest, in similarity with the findings of the GARCH(1,1) 

model, that the volatility predictions based on the test set are more satisfactory than 

the ones from the training and validation sets, as both the MSE and MAE metrics 

attain their lowest values for the test set. This empirical outcome is in disparity with 

the findings of the majority of previous neural network applications. Nevertheless, it 

is considered promising, since it may imply that the learning process of the GRU 

neural network has been very effective.    

	
Figure 17 (cf. Appendix C) compares the volatility forecasts obtained from the GRU 

neural network with the ex-post realized volatility. It can be observed that the GRU, 

although to a somewhat lower degree than the GARCH(1,1) model, fails to accurately 

estimate and predict the volatility spikes present in the whole data sample. 

Notwithstanding, it should be emphasized that both models seem to display an 

adequate overall forecasting ability when taking the low magnitude of the MSE and 

MAE metrics into account, and when graphically analyzing Figure 18 (cf. Appendix 

C), in which volatility forecasts for both models are plotted against the realized 

volatility.  

 

[INSERT FIGURE 17 AND 18 ABOUT HERE] 
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5.3 Value-at-Risk and Expected Shortfall Predictions  

 Following the volatility predictions obtained from the two models, VaR and ES 

forecasts of the EUR/USD exchange rate are computed, for which a summary is 

displayed in Table 16 and Table 17. The reported results are based on a rolling 

window approach with a fixed window length of 6288 days. Hence, the VaR and ES 

models are re-estimated every day. 

Table 16. Summary of VaR results 

 

Table 17. Summary of ES results 

 

 

 

 

 

The VaR forecasts are obtained with three different confidence levels; 95%, 97.5% 

and 99%, and then evaluated with a two-sided Kupiec test. When comparing the 

observed frequency of VaR violations in the out-of-sample period with a 95% 

confidence interval, the underlying VaR model based on GARCH(1,1) cannot be 

statistically rejected. In contrast, the VaR model based on the volatility predictions 

from the GRU is rejected, since the number of VaR exceedances fall outside the 

confidence interval. When considering a confidence level of 97.5%, the models 

produce an equal number of VaR violations, i.e. 7, resulting in both models being 

statistically rejected. For the 99% confidence level, the performance of the GRU 

Model 𝑉𝑎𝑅 Number of VaR 
Violations Confidence interval 95% 

95% 97.5% 99% 95% 97.5% 99% 95% 97.5% 99% 
VWHS with 
GARCH(1,1) 0.066 0.083 0.100 23 7 2 

21,42  8,24  2,11  VWHS with 
GRU-RNN 0.078 0.100 0.124 14 7 4 

Model 
𝐸𝑆 ES Test Statistic 

95% 97.5% 99% 95% 97.5% 99% 

VWHS with 

GARCH(1,1) 
0.087 0.099 0.113 0.291 0.519 0.588 

VWHS with 

GRU-RNN 
0.109 0.127 0.152 0.547 0.514 0.346 
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dominates that of the GARCH(1,1). However, albeit the VaR model based on 

GARCH(1,1) is not rejected on this level, the non-rejection occurs precisely at the 

lower bound of the interval, meaning that the GARCH(1,1) model is not indisputably 

non-rejected. To conclude, it can be inferred that the results for the VaR models are 

rather inconclusive across the different confidence levels. Hence, there is no clear-cut 

conclusion as to which of the two models provides the most accurate and reliable VaR 

forecasts of the EUR/USD exchange rate. However, despite the fact that a 99% VaR 

is required by the Basel II regulation, a 95% VaR is more relevant in this case, 

because models based on a 99% level are in general subject to a low power when 

applied on sample periods longer than one year. This means that, with a 99% 

confidence level, the probability of rejecting an incorrect model is very low.  

Furthermore, it can be seen that when decreasing the confidence level, the forecasting 

performance of the GARCH(1,1) model improves while it decreases for the GRU 

neural network. This finding, in conjunction with the fact that the power of the test is 

higher for the 95% level than for the 99%, indicates that the GRU neural network is 

deemed rather unsatisfactory for forecasting VaR compared to the GARCH(1,1).  

When the focus is switched towards ES, the test statistic for the underlying ES model 

based on the GARCH(1,1) with 95% confidence level is 0.291. Contrasting this test 

statistic to the critical value of -0.70, as proposed by Acerbi and Szeleky (2014), it is 

concluded that the null hypothesis is not rejected for a confidence level of 95%, 

suggesting that no statistical underestimation of the exchange rate risk can be 

concluded. In fact, neither of the two models is rejected at any confidence level for 

ES, since the test statistic is larger than the critical value for all levels. When further 

evaluating the test statistic values, the ANN performs better than the GARCH(1,1) at 

the 95% level, while the performance of the two models is fairly similar at the 97.5% 

level. Nonetheless, GARCH(1,1) appears to be the better performing model at the 

99% confidence level. According to the overall findings, both the GARCH(1,1) and 

the GRU neural network are suitable models in forecasting ES for all confidence 

levels.  
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6. Conclusion 
	
The rationale behind this study was to examine and compare the performances of the 

GRU neural network and the conventional statistical model GARCH(1,1) when 

predicting VaR and ES, using EUR/USD exchange rate volatility forecasts. 

 

The results suggest that the forecasting performance of neither the GRU neural 

network nor the GARCH(1,1) model could be clearly identified as superior to provide 

accurate predictions of both VaR and ES. Analyzed independently, the GARCH(1,1) 

model outperforms the GRU neural network when providing VaR95% and ES99% 

forecasts, whereas the GRU neural network shows better forecasting abilities when 

computing VaR99% and ES95% predictions. The intermediate confidence level of 

97,5%, does not permit any differentiation between both models with regards to VaR 

predictions. A comparable conclusion is made for ES97.5% forecasts, as the 

GARCH(1,1) model outperforms the GRU neural network to a very small extent. 

However, it is important to highlight that both approaches are not rejected at the 

chosen confidence levels. As such, the GRU neural network cannot be deemed very 

satisfactory for predicting VaR. The most pronounced difference between the two 

approaches can be found at the 95% level, where the GRU neural network is clearly 

rejected, while the GARCH(1,1) model is not. Similarly, the GRU neural network is 

more relevant to forecast ES at a 95% confidence level, as it appears to be the better 

performing model when it is weighted against the GARCH(1,1) model. 

 

Nevertheless, there are a few areas where further research is welcomed for the 

improvement of this study. First, it could be fruitful to define the look back as a hyper 

parameter to fine-tune, based on trial and error. Whilst a greater look back value 

incorporates more memory, it does not retain the entirety of the sample period when 

producing out-of-sample forecasts. As such, it seems prudent to test different settings 

in order to achieve the best possible neural network architecture. Additionally, 

forecasting realized higher moments of the exchange rate, such as skewness and 

kurtosis, are considered potential extensions that this body of research could benefit 

from. Moreover, since the presented empirical findings may partially be contingent 

upon the choice of the EUR/USD exchange rate, additional currency pairs should be 

evaluated in order to increase the robustness and the generalizability of the study. 
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Moreover, there is reason to believe that other determinants, such as the interest rate 

differential between the EUR/USD, affects the evolution of the exchange rate. Hence, 

it would be of relevance to use it as a complementary feature to the realized volatility 

for providing VaR and ES predictions.  
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Appendix A 
	

Figure 5. Return series of the EUR/USD exchange rate from 01.01.1999 to 
30.09.2018 

 
 
 
 

Figure 6. Realized Variance series 
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Appendix B 
 

For all graphs shown in Appendix B, number of epochs is represented by the 
horizontal axis (X-axis), while the loss functions are represented by the vertical axis 
(Y-axis).  
 
 
Figure 7. Training and Validation loss functions under Trial n°1 
 

 
 

Figure 8. Training and Validation loss functions under Trial n°2 
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Figure 9. Training and Validation loss functions under Trial n°3 
 
 

 
 
 

Figure 10. Training and Validation loss functions under Trial n°4 
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Figure 11. Training and Validation loss functions under Trial n°5 
 
 

 
 
 
Figure 12. Training and Validation loss functions under Trial n°6 
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Figure 13. Training and Validation loss functions under Trial n°7 
 
 

 
 
 
Figure 14. Training and Validation loss functions under Trial n°8 
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Figure 15. Training and Validation loss functions under Trial n°9 
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Appendix C 
	 
 

  
Table 13. In-sample estimation results of the GARCH(1,1) 
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Figure 16. Realized Variance and GARCH(1,1) Variance 
 

 
 
Figure 17. Realized Variance and GRU Neural Network Variance 
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Figure 18. Realized Variance, GARCH(1,1) Variance and GRU Neural Network 
Variance 
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